143689 # TDRSS TELECOMMUNICATIONS STUDY PHASE II- FINAL REPORT (NASA-CR-143689) TDRSS TELECOMMUNICATIONS N75-17545 STUDY, PHASE 2 Final Report, Aug. - Dec. 1974 (Magnavox Research Labs.) 59 p HC \$4.25 CSCL 17B Unclas G3/32 12038 Advanced Products Division The Magnavox Company 2829 Maricopa Street Torrance, California 90503 1 December 1974 Final Report for Period August 1974 - December 1974 Prepared for GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20771 | J. Report No. | 2. Government Accession No. | 3. Recipient's Catalog No. | |---|---|--| | | | | | 4. Title and Sublitle | 5. Report Date December 1, 1974 | | | TDRSS Telecommunications Study | | 6. Performing Organization Code | | Phase II – Final Repo | ort | | | 7. Author(s) C.R. Cahn | | 8. Performing Organization Report No. | | R.S. Cnossen | | R-4996 | | 9. Performing Organization Name and Add The Magnavox Compa | | 10. Work Unit No. | | Advanced Products D | | 11. Contract or Grant No. | | 2829 Maricopa Street | | NAS5-20047 | | Torrance, California | 90503 | 13. Type of Report and Period Covered | | 12. Sponsoring Agency Name and Address | | Type III (Final) | | National Aeronautics | | Aug 1974 to Dec 1974 | | Goddard Space Flight
Greenbelt, Maryland | | 14. Sponsoring Agency Code Code 805 | | 15. Supplementary Notes | | | | | | | | 16. Abstract | | | | the Shuttle telecomm with the TDRSS Singl addition, it consider S-band User Transpo | didate modulation waveform
unications requirements and
e Access S-band Service sp
s the feasibility of modifying
onder for operation with con | d also be compatible ecified in Phase I. In g a Single Access ventional STDN signals | | emanating from remo | otely located ground stations | S. | • | | | 1 . | | | 17. Key Words (Selected by Author(s)) | 18. Distribution Sta | element | | TDRS Satellite Link TDRS Transponder I Modulation Tradeoffs Phased Arrays | Design | | | 19. Security Classil. (of this report) | 20. Security Classif. (of this page) | 21. No. of Pages 22. Price® | | [| , | 1 | ^{*}For sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151. #### PREFACE NASA has conducted several studies, over the past several years, of a Tracking and Data Relay Satellite System (TDRSS) to augment the current tracking and data network. The results of these studies, which have established that a TDRSS is both feasible and cost effective, led to awards for major definition studies in May 1971. The studies were directed primarily to the relay spacecraft elements of the system. At the same time, several Goddard Space Flight Center (GSFC) in-house studies were directed to the design of the ground elements and overall system operational aspects. The integrated results of all these studies were published in a "TDRSS Definition Phase Study Report", December 1973. Subsequently, the Magnavox Company was awarded a study contract directed toward the telecommunications aspects of the system. A Phase I report dated September 1974, contained the results of a study to (1) determine the capability of the TDRS System as specified by the TDRSS Definition Phase Study Report, (2) determine potential configuration changes to satisfy all telecommunications performance objectives without major redesign, (3) perform analysis of significant system variables for the purpose of optimizing parameters and, (4) define the TDRSS telecommunications characteristics in greater detail than previously established. This Phase II report, dated December 1974, contains the results of a study to (1) determine alternative TDRSS implementations that can provide superior telecommunications support capability within the fundamental launch vehicle, frequency allocation, weight, and power constraints, but without restriction to current system definition and (2) perform comparative performance analyses between the TDRSS defined in Phase I and alternative configurations. Work on this report, entitled TDRSS Telecommunications Study, was accomplished by the Advanced Products Division of The Magnavox Company and complies with the requirements of Contract Number NAS5-20047. This report is the result of a study carried out by Dr. C.R. Cahn and Mr. R.S. Cnossen of the APD/Magnavox Research Laboratories. APD wishes to thank Mr. Leonard F. Deerkoski of NASA/GSFC, Greenbelt, Maryland, for his technical and administrative guidance during Phase II of this program. #### TABLE OF CONTENTS | Section | | <u>Title</u> | Page | |---------|--------------------------|---|-----------------------------| | * . | PREI | FACE | ii | | Ι | OBJE | ECTIVE | 1-1 | | П | TELE | ECOMMUNICATION SERVICE TO SHUTTLE | 2-1 | | | 2.1 | Synchronization of Spread Spectrum Forward Link to Shuttle | 2-1 | | | | 2.1.1 Synchronization Analysis | 2-2
2-4
2-6
2-7 | | | 2.2 | Return Link Modulation Scheme for Shuttle | 2-8 | | | | 2.2.1 Modulation - Mode 1 | 2-9
2-10 | | III | SQPS | K DEMODULATOR DESIGN PROBLEMS | 3-1 | | | 3.1
3.2
3.3
3.4 | Decision-Feedback Tracking for QPSK Decision-Feedback Tracking for SQPSK Detection of Carrier Synchronization Improved Threshold by Simultaneous Carrier Phase and | 3-1
3-4
3-8 | | | 3.5
3.6
3.7 | Bit Tracking Block Diagram of SQPSK Tracker Computer Simulation Results Conclusions | 3-9
3-11
3-11
3-14 | | · IV | | USER TRANSPONDER OPERATION WITH REMOTE GROUND TIONS | 4-1 | | | 4.1 | Remote Ground Station Equipment Requirements for Compatibility with TDRS User Transponders | 4-1 | | | | 4.1.1 Conclusion | 4-3 | | | 4.2 | Time Division Multiplexing for Remote Station Operation | 4-4 | | | · | 4.2.1 Conclusion | 4-4 | | • | 4.3 | Modified Transponder for Use with STDN Ground Stations | 4-5 | | | | 4.3.1 Recognition of STDN Signal | 4-5 | #### TABLE OF CONTENTS (Continued) | Section | <u>Title</u> | Page | |---------|--|----------------------------| | IV . | TDRS USER TRANSPONDER OPERATION WITH REMOTE GROUND STATIONS (Continued) | | | | 4.3.2 General Description of User Equipment Modifications 4.3.3 Size, Weight, and Power 4.3.4 Module Specifications 4.3.5 Operational Procedures | 4-7
4-9
4-12
4-12 | | V | TABULATION OF CODES FOR MULTIPLE ACCESS AND S-BAND SINGLE ACCESS USERS | 5-1 | | | 5.1 FH Code for Multiple Access Forward Link 5.2 PN Codes for Multiple Access 5.3 FH Code for Single Access 5.4 PN Codes for Single Access | 5-1
5-1
5-7
5-7 | | VI | REFERENCES | 6-1 | #### LIST OF ILLUSTRATIONS | Figure | Title | Page | |--------|--|------| | 2-1 | Synchronization Circuit Concept | 2-2 | | 2-2 | Synchronization Performance | 2-3 | | 2-3 | Number of Passes to Detect Sync | 2-4 | | 2-4 | Acquisition Time as Function of Receiver S/N | 2-7 | | 2-5 | Quadrature Modulation with Two Data Streams | 2-9 | | 2-6 | Asynchronous TDM Concept | 2-10 | | 2-7 | SCPDM | 2-11 | | 3-1 | QPSK Error Characteristic | 3-3 | | 3-2 | SQPSK Error Characteristic | 3-5 | | 3-3 | SQPSK Error Characteristic - Narrower Filters | 3-6 | | 3-4 | SQPSK Error Characteristic - Sampled Filters | 3-7 | | 3-5 | I and D Timing with Error | 3-10 | | 3-6 | Block Diagram of SQPSK Demodulator | 3-12 | | 3-7 | Acquisition Limit to Designated Channel | 3-13 | | 4-1 | Ground Receiver-Transmitter Block Diagram | 4-2 | | 4-2 | Multiple Access User Transponder Modified for STDN Signals | 4-8 | | 4-3 | STDN Signal Detector Module | 4-9 | #### LIST OF TABLES | Table | Title | Page | |-------|--|------| | 4-1 | Uplink From STDN | 4-6 | | 4-2 | Modified S-band Single Access Transponder Size, Weight and Power | 4-10 | | 5-1 | Printout of FH Codes for Multiple Access | 5-2 | | 5-2 | MA 18-Stage Forward PN Pairs | 5-8 | | 5-3 | MA 18-Stage Return PN Pairs | 5-9 | | 5-4 | MA Return Link Only | 5-10 | | 5-5 | S-Band SA Forward Link | 5-11 | | 5-6 | S-Band SA Return PN Pair | 5-12 | #### SECTION I #### OBJECTIVE The Tracking and Data Relay Satellite System (TDRSS) is designed to provide a relay capability between a ground station and low altitude user vehicles. The telecommunication services for S-band and Ku-band have been analyzed in detail during Phase I of the study. [1] The Phase II goal of the study is: - a. Determine alternate TDRSS implementations that can provide superior telecommunication support capability within the fundamental launch vehicle, frequency allocations, weight, and power constraints; but without restriction to current system definition. - b. Perform comparative performance analyses between the TDRSS defined in Phase I and alternative configurations. The following sections are in compliance with this Phase II goal. # SECTION II TELECOMMUNICATION SERVICE TO SHUTTLE This section discusses some of the special problems associated with TDRSS support of the Shuttle (Orbiter), in accordance with requirements defined by NASA-JSC. [2] The modulation approaches described here may differ from signal designs currently suggested by NASA-JSC. # 2.1 SYNCHRONIZATION OF SPREAD SPECTRUM FORWARD LINK TO SHUTTLE The single access forward link from TDRS to Shuttle on either S-band or Ku band is required to be spread spectrum, approximately 15 MHz bandwidth, so as to meet flux density limits on the TDRS transmissions. However, in
contrast to other TDRS users, the Shuttle does not have a two-way ranging requirement. There is, instead, a one-way range rate measurement made with the aid of an on-board atomic frequency standard. A demand for protection against the unlikely possibility of specular multipath is not imposed, and a relatively short PN code can be employed at a chip rate of approximately 12 Mbps. A code period of 2047 chips (or 2048 chips) is the minimum consistent with 4 kHz bandwidth for flux density (i.e., a discrete spectrum should have a spectral line spacing comparable to or less than 4 kHz). The synchronization requirement for Shuttle is somewhat different than for other users in that digital voice (plus commands) is being transmitted. Useful (although noisy) voice can be received down to $E_b/N_o=0$ dB, where the error rate is high. Rate 1/3 error correction coding is utilized, and we assume the data rate is 32 Kbps (thus, the symbol rate is 96 Kbps). The capability for synchronization at this minimum value of E_b/N_o is desired, although a longer acquisition time is acceptable than at the design point of $E_b/N_o=3.9$ dB for 10^{-4} error rate. The synchronization philosophy is that the transmission to the Shuttle is initiated with data already present, and acquisition should be completed in a reasonably short time on the order of 5 seconds, although 20 seconds or even longer would not be unacceptable for the initial acquisition. However, faster reacquisition should be possible after a dropout (due to antenna nulls) of a few seconds. The measure of acquisition time is the average time to sync, or, alternatively, the time to sync achieved on 90 percent of trials*. #### 2.1.1 SYNCHRONIZATION ANALYSIS We adopt the synchronization process described in Appendix III of the Phase I - Final Report. This employs a sequential detection strategy to speed up the synchronization search. A single filter design is contemplated, with the structure shown in figure 2-1. Typical performance, as derived by computer simulations, is given in Figure 2-1. Synchronization Circuit Concept figure 2-2. The bias is introduced to cause the integrated envelope to fall below a dismissal threshold when correlation does not exist in that particular search position. When correlation occurs in the correct search position, the envelope will tend to exceed the bias, and dismissal does not occur. Synchronization is declared by failure to dismiss after a designated truncation interval. The noise level is measured in a wide bandwidth to set receiver gain (i.e., a total power AGC is implied). The average search rate enables the time uncertainty (one code period for initial acquisition) to be searched in a time $T_{\rm s}$, defined by $$T_s = \frac{\text{No. of PN chips of time uncertainty}}{\text{Average search rate in chips/sec}}$$ (2-1) ^{*}For other TDRSS users, we have adopted the criterion on achieving, say, 90 percent probability of acquisition in a specified maximum time. Figure 2-2. Synchronization Performance figure 2-2 gives the probability P_d of detecting sync on a single pass through the time uncertainty, when the frequency error is zero. Then, the cumulative probability $P_d^{(M)}$ of detecting sync after M passes is $$P_{d}^{(M)} = 1 - (1 - P_{d})^{M}$$ (2-2) since each pass is an independent chance to detect sync. The time $T_s^{(.9)}$ to detect sync which is not exceeded 90 percent is approximately given by solving (2-2) for M with $P_d^{(M)} = .9$ and assuming an average rate of search per pass, yielding $$T_s^{(.9)} = MT_s = T_s \frac{\log(.1)}{\log(1 - P_d)}$$ (2-3) figure 2-3 presents a plot of (2-3) as a function of P_d . The average time to detect sync is computed by noting that the average number of passes required is $1/P_d$, obtained from the binomial distribution (i.e., "coin flipping"). Since detection occurs, on the average, halfway through the last pass, 1174-3643 UNCLASSIFIED Figure 2-3. Number of Passes to Detect Sync $$T_s^{(av)} = T_s^{(-.5 + 1/P_d)}$$ (2-4) Equation (2-4) is plotted in figure 2-3 as a function of P_d. By combining figures 2-2 and 2-3, the average synchronization time and the time not exceeded 90 percent can be expressed as a function of received signal-to-noise ratio. However, it should be remembered that Doppler still must be taken into account. #### 2.1.2 NUMERICAL RESULTS FOR SHUTTLE AT S-BAND For S-band operation to the Shuttle, assume a PN code period of 2047 chips and a symbol rate of 96 Kbps, the data rate being 32 Kbps biphase with rate 1/3 coding. Assume the same losses apply during synchronization as during data demodulation, and let the duration of coherent integration be one symbol, or 10.4 microseconds. Using the curve in figure 2-2 for lower bias, we find Average Search Rate = $$.041 \times 96 \times 10^3 = 3900 \text{ chips/sec}$$ (2-5) and for one pass through 2047 chips of uncertainty (one code period) $$T_s = \frac{2047}{3900} = 0.5 \text{ second/pass}$$ (2-6) As already mentioned, figure 2-2 can be used with figure 2-3 to yield the acquisition time as a function of E_b/N_o^* . We have (using the curve for lower bias of figure 2-2) $$E/N_{o} = E_{b}/N_{o} - 4.8 \text{ dB} + 13.8 \text{ dB}$$ $$= E_{b}/N_{o} + 9 \text{ dB}$$ (2-7) as the abscissa of figure 2-2 to find Pd. We now bring in the effect of Doppler. Figure 2-2 is for zero Doppler, and with a carrier frequency error Δf , the correlated amplitude drops according to Amplitude = $$\frac{\sin(\pi \Delta f T_{coh})}{(\pi \Delta f T_{coh})}$$ (2-8) where T_{coh} is the duration of coherent integration (10.4 microseconds in the present case). Maximum Doppler at S-band (26 parts per million) is 55 kHz, for which (2-8) yields an amplitude of 0.54, or 5 dB loss. Because of this loss, we break the frequency uncertainty -55 kHz to 55 kHz into two regions, with a maximum loss now of 1.2 dB at maximum Doppler. The two frequency uncertainty regions are searched serially, doubling the acquisition time**. ^{*}Note, figure 2-2 defines E_b/N_0 for the duration of coherent integration, or one symbol. Here E_b/N_0 is defined to apply to a data bit, and is 4.8 dB higher (rate -1/3). ^{**}In addition to carrier Doppler, we sometimes have to consider code Doppler. For a PN chip rate of 12 Mbps, maximum code Doppler is 312 chips/sec over the full uncertainty, or 156 chips/sec with two uncertainty regions. Figure 2-2 is based on a truncation of about 200 coherent integration intervals, or 2 milliseconds. For a Doppler of 156 chips/sec, the relative drift is 0.3 chip during the truncation. Thus, we are about at the limit of tolerable code Doppler in the present design. The alternative of offsetting the ground transmission by an estimate of Doppler is not allowed because of the one-way range rate measurement to be made on-board the Shuttle. Offsetting the receive frequency by an estimate of Doppler would be desirable, if such information is available on-board the Shuttle prior to the initial sync acquisition. Figure 2-4 presents the computed acquisition performance results, with 1.2 dB of loss due to Doppler included, based on serial search over two frequency uncertainty regions. #### 2.1.3 REACQUISITION CONSIDERATIONS If there is a temporary loss of signal in the Shuttle's receiver, such as could be caused by an antenna null, the receiver will stop tracking the PN, and there will be a drift of code phase in the receiver until the received signal level is restored to a usable value. Because Shuttle is making one-way Doppler measurements with a stable oscillator (say 10⁻⁹ accuracy), the drift is almost entirely due to unpredicted motion* relative to TDRS. Let us assume dynamics due to orbiting only, which means a maximum possible acceleration of lg, or 9.8 m/sec², relative to TDRS. If the Shuttle makes no attempt to estimate the relative acceleration (a third-order carrier tracking loop would provide such an estimate) but uses the range rate measurement (which is essentially perfect), the range error builds up according to Maximum range error] $$_{PN \text{ chips}} = 0.2t_{sec}^2$$ (2-9) at 12 Mbps We see that an error of ±1024 PN chips can be reached after 72 seconds. It is concluded that with a PN code period of 2047 chips, it is preferable to search about the estimated time position of correlation for a maximum of 72 seconds after loss of signal. The range uncertainty builds up as the square of elapsed time. After 72 seconds, the receiver should revert to the initial sync acquisition process. Note that a PN receiver implementation with a very narrow code tracking loop which is aided by scaling from the carrier tracking loop automatically extrapolates ranges on the basis of one-way Doppler information. ^{*}With 10^{-9} oscillator frequency accuracy, there is 0.1 microsecond error after 100 seconds, or one PN chip at 12 Mbps chip rate. The error of the one-way Doppler measurement itself is less than one-half cycle in 2 x 10^9 for one second averaging. Figure 2-4. Acquisition Time as Function of Receiver S/N #### 2.1.4 CONCLUSIONS An analysis of the TDRS-to-Shuttle link at S-band has been carried out for a data rate of 32 Kbps (the lowest data rate of concern). The receiver is presumed to search continually through the 2047 chip period of the PN code until synchronization is detected. As S/N in the receiver drops, the acquisition time increases because the receiver has to make several passes through the full period until sync is detected. Acceptable initial acquisition time (average of about 10 seconds) is achieved for a received signal-to-noise ratio as low as $E_b/N_o=0$ dB (at 32 Kbps). The average initial acquisition time is less than 1 second at $E_b/N_o=4$ dB. The receiver requires no knowledge of S/N for this acquisition concept, but sets the detection thresholds on the basis of total power. As E_b/N_o decreases, the probability of detection per pass decreases. The acquisition time has been doubled and 1.2 dB of loss
included to take into account a maximum Doppler of 55 kHz. If a coarse estimation of Doppler is possible on-board the Shuttle, improved acquisition performance can be realized. If loss of signal occurs temporarily, the receiver should search about the code phase prior to loss updated by one-way Doppler. (A narrow PN delay lock loop aided by scaling from the carrier tracking loop automatically performs this updating.) The error due to acceleration in orbit of 1g is less than the code period until 72 seconds has elapsed. The search should be conducted over an aperture which is growing quadratically with elapsed time. It should be pointed out that the implicit assumption has been made that the data is synchronous to the PN. The integrate-and-dump IF filter has its coherent integration extended over a data symbol, whose timing is fixed relative to the PN code repetition marker. The data symbols can be either in NRZ or Manchester format without affecting the analysis presented above. (The format is, of course, known.) With asynchronous data, the sync acquisition performance would be poorer, and a sampled IF would have to be replaced by a continuous filter. Also, data demodulation would be slightly degraded by the quantizing noise due to reclocking asynchronous data transitions. Thus, we recommend use of synchronous data on the TDRS-to-Shuttle link, where there is no operational difficulty involved. (Command bits are stored in a buffer anyway, and the voice digitizer can use a clock derived from the PN chip rate.) As a final comment, the PN design has a code period of 170 microseconds and provides no protection against a possible multipath delay which is exactly a multiple of the code period. Delays as great as 33 milliseconds can be experienced at an altitude of 5000 Km. #### 2.2 RETURN LINK MODULATION SCHEME FOR SHUTTLE There are two modes specified for the Shuttle/TDRS return link: [2] Mode 1 - Simultaneous transmission of 2 Mbps digital data or 192 Kbps digital data, 50 Mbps wideband digital data. Mode 2. - Simultaneous transmission of 4.2 MHz baseband video, 2 Mbps digital data, 192 Kbps digital data. Simultaneous transmission in mode 1 of 2 Mbps data (playback from recorder) and 192 Kbps real time data is actually desired, along with the 50 Mbps wideband data. These three data streams have independent clocks, and the maximum rates are specified. The modulation should be of constant envelope type. #### 2.2.1 MODULATION - MODE 1 A solution for handling two independent data streams is by quadrature modulation as sketched in figure 2-5. After coherent demodulation in the receiver, there are two independent baseband outputs, and the respective data clocks are recovered by independent bit synchronizers. If the two channels have disparate data rates, they can be distinguished in the demodulator without ambiguity. In the modulator, the two channels ideally are given amplitude weighting proportional to the square root of their data rates. (A practical limit would be imposed on the amplitude ratio.) Note that the resultant modulated carrier has constant envelope even though the two channels do not have the same amplitude. The above describes the technique for quadrature multiplexing of the 50 Mbps NRZ data stream with the 2 Mbps data stream. However, if the 50 Mbps is rate -1/2 error correction coded, the symbol rate is 100 Mbps. The quadrature multiplexing precludes handling this 100 Mbps stream as a staggered quadriphase transmission; however, the wideband Ku-band return link of TDRS has 225 MHz bandwidth, ample for 100 Mbps. Because of the wide bandwidth needed to pass the 50 or 100 Mbps symbol rate, asynchronous TDM is feasible to multiplex 192 Kbps with the 2 Mbps data. The scheme reserves 10 percent of each 2 Mbps data bit for an independent low-rate asynchronous data channel, as suggested in figure 2-6. Bit synchronization of the 2 1174-3587 UNCLASSIFIED Figure 2-5. Quadrature Modulation with Two Data Streams Mbps data is much more accurate than 10 percent, and the bandwidth is wide enough to resolve the 10 percent portion. Thus, we can transmit and receive the asynchronous 192 Kbps data by sampling the data waveform at the 2 Mbps data clock. An independently acting bit synchronizer to extract the asynchronous 192 Kbps clock is required. There is a slight inefficiency associated with the asynchronous TDM but only on the 192 Kbps data. Hence, the inefficiency is inconsequential. The inefficiency arises because the 192 Kbps clock tends to move discretely by one sample as necessary to create the correct average rate; hence, an extra sample can occasionally be included incorrectly in a given bit (or taken away from a given bit). With 10 samples per bit, this effect is not of much concern. #### 2.2.2 MODULATION - MODE 2 In mode 2, we replace the 50 Mbps data with suppressed carrier PDM at a sampling rate in excess of twice the 4.2 MHz baseband to avoid aliasing. A sampling rate of about 10 Mbps can be employed. Figure 2-7 illustrates SCPDM [3], which generates a phase modulated square wave at half the sampling rate. Conditioning of the input may involve AGC, peak clipping, and preemphasis. Theoretical analysis and computer simulation ^[4] shows that the output test-tone-to-noise ratio of unfiltered SCPDM with maximum-likelihood demodulation is approximated by $$(S/N)_{o} \approx 0.5(E_{s}/N_{o})^{2} \tag{2-9}$$ not including any further improvement from filtering to the baseband (if less than twice the sampling rate) and from preemphasis of the transmitted spectrum. In (2-9), Figure 2-6. Asynchronous TDM Concept #### (b) SCPDM Modulator Waveforms Figure 2-7. SCPDM E_s/N_o is the energy/noise ratio over the sampling interval. Taking $(S/N)_o = 26 \text{ dB}$ as the requirement, (2-9) yields $E_s/N_o = 14.5 \text{ dB}$. At the minimum theoretical sampling rate of 8.4 Mbps, $S/N_o = 83.7 \text{ dB-Hz}$. The effect of filtering the SCPDM waveform is to create a finite switching time, and this ultimately causes (2-9) to be replaced by a linear input-output relation when E_s/N_o becomes sufficiently high. The 225 MHz bandwidth of the Ku-band return link does not degrade performance. The SCPDM replaces the 50 Mbps data used in mode 1. Thus, the 192 Kbps data still is multiplexed with the 2 Mbps data by asynchronous TDM. The resultant is quadrature multiplexed with the SCPDM. (Note, S/N_0 for 50 Mbps data, rate - 1/2 encoded, is 83 dB-Hz, based on E_b/N_0 = 6.0 dB, and this is about the same as needed to handle 4.2 MHz baseband by SCPDM.) The demodulator can unambigously identify which channel contains the SCPDM by recognizing the square wave component at half the sampling rate. This square wave is also used to regenerate the sampling clock. Consequently, the modulation baseband cannot extend all the way to DC, but must cutoff above the bandwidth of the SCPDM clock tracking loop. An implementation of SCPDM quadrature multiplexed with digital data has been developed for an audio baseband (4 kHz audio and 2.4 Kbps data). ^[5] This modem does not attempt to perform maximum-likelihood demodulation since it emphasizes operation at low signal-to-noise ratios. Consequently, the demodulation is simply integrate-and-dump over the full sampling interval. The extension to a maximum-likelihood demodulation is conceptually straightforward, because the time of occurrence of the maximum integrated voltage during the sampling interval is the maximum-likelihood estimator of the switching instant. #### SECTION III #### SQPSK DEMODULATOR DESIGN PROBLEMS A scheme for reconstituting the phase reference is required for coherent demodulation of staggered quadriphase (SQPSK). One alternative is, of course, to transmit a separate carrier component, unmodulated by the data, which shares the total power with the data modulated component. The phase reference is derived by tracking this carrier component, and if it is a spread spectrum signal, it serves for timing extraction also (e.g., for ranging)^[6]. The amount of power to be allocated to the carrier component may be determined in a straightforward manner from the requirement that the signal-to-noise ratio in the bandwidth of the tracking loop exceed roughly 20 dB to produce an rms error of 0.1 radian (required value depends on desired error rate and error correcting code performance)^[7]. We study here the use of suppressed carrier tracking, which for SQPSK is a generalization of the familiar Costas loop or squaring loop for BPSK. In particular, the problem of working at a low E_b/N_o is of concern. (Note, E_b/N_o is defined herein as the energy/noise density for a transmitted binary digit, rather than for an information bit. Thus, with a rate -1/2 error correcting code E_b/N_o = 2 dB when $E_{\rm information\ bit}/N_o$ = 5 dB.) Implementation of QPSK demodulators has typically [8] not emphasized operation close to theoretical bounds at low E_b/N_o ; however, this is essential for transmission of data which has been error correction coded or which conveys digital voice. #### 3.1 DECISION-FEEDBACK TRACKING FOR QPSK Let us first assume QPSK instead of SQPSK. The QPSK waveform is $$s(t) = a(t) \cos \omega_0 t + b(t) \sin \omega_0 t$$ (3-1) where a and b denote the respective binary data streams, and the bit transitions on the two streams coincide. If the reconstituted phase reference has a shift θ , coherent demodulation of (3-1) with additive noise yields the two output channels $$I = a(t) \cos \theta + b(t) \sin \theta + x(t)$$ $$Q = -a(t) \sin \theta + b(t) \cos \theta + y(t)$$ (3-2) where x and y are independent Gaussian noise voltages. If good estimates of a and b are extracted by the demodulation, decision feedback yields an error voltage for tracking, according to $$\epsilon = \stackrel{\wedge}{a}(t) Q - \stackrel{\wedge}{b}(t) I \cong a(t) Q - b(t) I$$ $$= -(a^2 + b^2) \sin \theta + a(t) \times (t) - b(t) y(t)$$ (3-3) where \hat{a} and \hat{b} denote the
estimates*. Note that terms involving cos θ cancel out on the assumption that the estimates are correct. The form of (3-3) suggests deriving the error voltage by decision feedback as follows $$\epsilon = sign(I) Q - sign(Q)I$$ (3-4) where $\hat{a} = \text{sign}(I)$ and $\hat{b} = \text{sign}(Q)$. Of course, there are four stable tracking points spaced by multiples of $\pi/2$, where $\epsilon = 0$. Equation (3-4) is a generalization of the Costas loop for BPSK, which derives ϵ by one of the terms on the right side of (3-4). If integrate-and-dump over the bit duration is performed on each channel, (3-4) is computed at the quadriphase symbol rate (equal to half the total bit rate). Alternatively, a single-pole low pass filter can be used on each channel to smooth I and Q prior to computing ϵ according to (3-4). The performance of the suppressed-carrier tracking loop can be estimated from the linearized equivalent circuit defined by the average slope of ϵ as a function of θ and the noise density associated with the fluctuations of ϵ . These parameters can be measured by a computer simulation which measures mean and variance of ϵ . Results for QPSK with integrate-and-dump filtering are given in figure 3-1, with ϵ normalized by the signal amplitude. The variance of ϵ is indicated in terms of the equivalent noise density of white noise in the tracking loop, and the unit of bandwidth is the total bit rate**. The ideal curve for large E_b/N_o is $\epsilon=2\sin\theta$, with the normalization employed, with $|\theta|<\pi/4$. The error characteristic is periodic, with period = $\pi/2$, corresponding to the four stable tracking points. **The measured variance = Noise Density/ $(2 \times integration interval)$. ^{*}Decision feedback, in general, introduces the problem of compensating for demodulation delay, but this is not a difficulty in the schemes described herein. Figure 3-1. QPSK Error Characteristic The use of the numerical information from figure 3-1 is now illustrated. For a loop of noise bandwidth ${\bf B_L}$, the rms tracking error in radians is obtained from the linearized equivalent circuit to be $$\sigma_{\theta} = \text{(Noise Density } \cdot B_{\text{L}})^{.5}/\text{slope}$$ (3-5) At $E_b/N_o=0$ dB, the slope is approximately .18/.2 = 0.9. Since the Noise Density = 3.2/bit rate, (3-5) gives $\sigma_\theta=2(B_L/Bit\ Rate)^{.5}$. Then, if we require $\sigma_\theta=.1$ radian, $B_L/Bit\ Rate=.0025$. There is a potential problem associated with suppressed carrier tracking, that a false lock condition can exist where the frequency is offset from the true frequency. For instance, with QPSK, a stable false lock can exist if there is a phase change of $\pi/2$ from one quadriphase symbol to the next. Thus, the offset frequency is 1/8 the total bit rate*. This false lock condition can be avoided provided that the maximum carrier frequency uncertainty is constrained to be less than the smallest false lock offset. It is seen from figure 3-1 that a definite degradation occurs when E_b/N_o drops below roughly 0 dB, as indicated by the reduction in slope. This slope reduction is due to the high error rate in making the bit decisions at low E_b/N_o . Heuristically, at low signal-to-noise ratio, sign(I) is proportional to I and sign(Q) is proportional to Q; hence, ϵ in (3-4) approaches zero, explaining the threshold behavior. If single pole filters are used instead of integrate-and-dump, the wider noise bandwidth causes the threshold to occur at a higher E_b/N_o , as will be seen below when discussing SQPSK. #### 3.2 <u>DECISION FEEDBACK TRACKING FOR SQPSK</u> We now assume SQPSK in which the bit transitions on the two channels are displaced by half the bit interval. Thus, we write $$s(t) = a(t) \cos \omega_0 t + b(t - T/2) \sin \omega_0 t \qquad (3-6)$$ to show the displacement explicitly. Now $$I = a(t) \cos \theta + b(t - T/2) \sin \theta + x(t)$$ $$Q = -a(t) \sin \theta + b(t - T/2) \cos \theta + y(t)$$ (3-7) and after smoothing by single-pole filters, the error voltage can be computed according to (3-4). A typical design practice for BPSK is to set the 3 dB filter bandwidth equal to T^{-1} . Note that the noise bandwidth of the filter is 1.57 T^{-1} , while that of integrate-and-dump is 0.5 T^{-1} , a ratio of 5 dB. Because of the thresholding behavior of (3-4), a narrower single pole low pass filter may be desirable with SQPSK. ^{*}With Costas loop tracking of BPSK, false lock can exist for a phase change of π , and the offset frequency for a false lock is half the bit rate. Figure 3-2 gives the results of a computer simulation with SQPSK and single-pole filters with a 3-dB bandwidth of T^{-1} . Because the filters are not memoryless, the noise density was obtained from the variance measured for ϵ averaged over an integration interval of 20 bits duration. It is expected that QPSK and SQPSK would behave similarly with I and Q smoothed by single-pole filters. Figure 3-2 displays a sharp threshold behavior, and the slope has been reduced almost to zero at $E_b/N_o=0$ dB. Reducing the low pass filter bandwidth should improve this threshold point, at the cost of degrading the slope at high E_b/N_o^* . Figure 3-2. SQPSK Error Characteristic ^{*}The transient due to a bit transition covers a larger portion of the bit duration, and this causes an effective reduction in signal amplitude. Figure 3-3 shows simulation results with the single-pole filter 3 -dB bandwidth equal to 1/4T. As predicted, the slope is lower than in figure 3-2 when $E_b/N_o = 12$ dB (and much lower than the ideal slope), but substantially higher when $E_b/N_o = 0$ dB. (Several points are plotted for $E_b/N_o = 0$ dB to show the scatter of the 1000 bit average.) In an attempt to apply integrate-and-dump filters to SQPSK, the difficulty is noted that the bit transitions occur at different times on I and Q. One possibility is to treat SQPSK as QPSK of twice the bit rate, but this obviously has a 3 dB disadvantage with respect to the degradation occuring at low E_b/N_o . A superior approach for integrate-and-dump filtering with SQPSK is now described. Referring to (3-3), the Figure 3-3. SQPSK Error Characteristic - Narrower Filters observation is made that the estimates \hat{a} and \hat{b} are alternately available at the respective bit transition points. Thus, we write $$\stackrel{\wedge}{a} Q = sign(I) Q_{I}$$ $$\stackrel{\wedge}{b} I = -sign(Q) I_{Q}$$ (3-8) The notation is to convey that the integrate-and-dumps for I and $\mathbf{Q}_{\mathbf{I}}$ are sampled at the I-bit transitions, while those for \mathbf{Q} and $\mathbf{I}_{\mathbf{Q}}$ are sampled at the \mathbf{Q} -bit transitions. Results of a computer simulation of SQPSK with integrate-and-dump as defined by (3-8) are given in figure 3-4. Compared to QPSK in figure 3-1, it appears that there is somewhat less degradation at low $\rm E_b/N_o$. Figure 3-4. SQPSK Error Characteristic - Sampled Filters #### 3.3 DETECTION OF CARRIER SYNCHRONIZATION To detect carrier synchronization in a decision-feedback type of tracking loop, an indicator is desired which becomes nonzero only for correct synchronization. The possibility of false lock exists with suppressed carrier tracking, with the phase reference changing by π radians per symbol for BPSK and $\pi/2$ radians per symbol (or $\pi/4$ per bit) for QPSK and SQPSK. Thus, a biphase Costas loop can false lock at a frequency offset of half the bit rate, and a quadriphase decision-feedback loop can lock at frequency offset of an eighth the total bit rate. With a Costas loop for BPSK, an indicator of sync detection is given by $I^2 - Q^2$, provided I and Q have been smoothed by non-sampled filters*. With false lock at an offset $\Delta\omega$. $$I = \sqrt{2} A \cos(\Delta \omega t + \theta)$$ $$Q = \sqrt{2} A \sin(\Delta \omega t + \theta)$$ (3-9) and I^2 and Q^2 both have the same time average**. This would not be true, however, for integrate-and-dump filtering of I and Q. With QPSK and SQPSK, the sync indicator is generalized from that for biphase by defining sync indicator = $$(1^2 + Q^2) - 2.74 \epsilon^2$$ (3-10) where ϵ is given by (3-4). In the absence of a carrier, I and Q are independent Gaussian processes with variance σ^2 , and $$Av \left\{ I^{2} + Q^{2} \right\} = 2\sigma^{2}$$ $$Av \left\{ \epsilon^{2} \right\} = Av \left\{ I^{2} + Q^{2} - 2 |I| |Q| \right\} = .73 \sigma^{2}$$ (3-11) sync detector averages to 0. For a false lock with I and Q given by (3-4), we find $$Av\{I^2 + Q^2\} = 2 A^2$$ $$Av\{\epsilon^2\} = Av\{2 A^2 - 2 A^2 | \sin 2\Delta\omega t|\} = .73 A^2$$ (3-12) The sync indicator averages to 0, provided that I and Q are non-sampled filters. However, for a true lock $\epsilon \rightarrow 0$, and a positive sync indication results, on the average. ^{*}Q is driven to zero and |I| to a maximum by the tracking loop for BPSK. **A narrow tracking loop bandwidth, compared to the offset frequency, is assumed, so that θ varies negligibly over one cycle of $\Delta\omega$. ## 3.4 IMPROVED THRESHOLD BY SIMULTANEOUS CARRIER PHASE AND BIT TRACKING We see from the above that it is difficult to maintain carrier phase synchronization when demodulating staggered quadriphase at low E_b/N_o , such as for operation with error correction coding*. We take as the objective that $E_b/N_o \cong 0$ dB for the transmitted bits. One approach to derive an error characteristic for phase tracking is to extract I and Q baseband channels by product detection and filter them with a single pole low pass filter prior to computing $$\epsilon_{\theta} = \operatorname{sign}(I)Q - \operatorname{sign}(Q)I$$ (3-13) This has a null at zero phase error. After carrier synchronization is achieved, the bit timing can be extracted by an independent bit synchronizer which locks to the bit transitions in the
conventional way. In this approach, SQPSK is treated the same as QPSK, and there is an ambiguity of multiples of $\pi/2$ in carrier phase tracking. With SQPSK, a $\pi/2$ slip in carrier phase must be detected since the bit transitions on the two channels are displaced. At low E_b/N_o , this approach has the disadvantage of a degraded carrier tracking threshold due to use of single pole filters rather than I and D. The advantage is that carrier synchronization is not dependent on having bit synchronization. To improve the threshold, I and D filters matched to the bit duration are needed. Now, the problem is how to derive bit timing simultaneously with achieving carrier phase tracking**. We discuss this simultaneous synchronization problem for SQPSK only. To begin the discussion, assume that the SQPSK demodulator has good estimates of carrier phase and bit timing. Figure 3-5 shows the bit streams in the respective channels and I and D with timing matched to the I channel with an error τ . That is, the SQPSK signal is $$s(t) = a(t) \cos \omega_o t + b(t) \sin \omega_o t$$ (3-14) ^{*}In this discussion, E_b/N_o is the energy/noise density per transmitted bit; hence, redundancy of error correction is not included. ^{**}If bit timing where known from another source, this problem would be alleviated. Figure 3-5. I and D Timing With TError and with perfect phase synchronization, I = a(t) and Q = b(t). More generally, there is a phase error θ , and $$I = a(t) \cos \theta + b(t) \sin \theta$$ $$Q = -a(t) \sin \theta + b(t) \cos \theta$$ (3-15) From figure 3-5, we see that for $0 < \tau < .5$ the I and D outputs are $$I_{D} = [a_{k} (1 - \tau) + a_{k+1} \tau] \cos \theta + [b_{k-1} (.5 - \tau) + b_{k} (.5 + \tau)] \sin \theta$$ $$Q_{D} = -[a_{k} (1 - \tau) + a_{k+1} \tau] \sin \theta + [b_{k-1} (.5 - \tau) + b_{k} (.5 - \tau)] \cos \theta$$ (3-16) The expressions for $-.5 < \tau < 0$ can be similarly written. For $\tau = 0$ and $\theta < \pi/4$, we find the error voltage to be $$\epsilon_{\theta}$$ = sign(I_D) $Q_D = -a_k^2 \sin \theta + .5 a_k [b_{k-1} + b_k] \cos \theta$ (3-17) and there is an average restoring force proportional to $\sin \theta$. A similar derivation with timing matched to the Q channel leads to $$\epsilon_{\theta} \Big|_{\tau=0} = -\operatorname{sign}(Q_{D}) I_{D} = -b_{k}^{2} \sin \theta - .5 b_{k} [a_{k} + a_{k+1}] \cos \theta \qquad (3-18)$$ and the cross-product terms in (3-17) and (3-18) will cancel when summed over the sequence of bits. Thus, if the timing error is small, carrier phase synchronization can occur, since a restoring force exists proportional to $\sin \theta$. Now, let us assume $\theta = 0$ and $0 < \tau < .5$. A conventional bit synchronizer derives the error voltage from an I and D which straddles the bit transitions, and corrects the sign by observing the polarity of the bit transition. Thus, with timing matched to the I channel, Q_D straddles the transitions in the Q channel, and $$Q_{D}\Big]_{\theta=0} = b_{k-1}(.5 - \tau) + b_{k}(.5 + \tau)$$ (3-19) The bit transition polarity is determined from the polarities of $$Q_{D}\Big]_{\theta=0} = b_{k-1}(1-\tau) + b_{k}\tau$$ $$.5 \text{ bit early}$$ $$Q_{D}\Big]_{\theta=0} = b_{k}(1-\tau) + b_{k+1}\tau$$ $$.5 \text{ bit late}$$ $$(3-20)$$ With timing matched to the Q channel, a similar computation derives an error from In- #### 3.5 BLOCK DIAGRAM OF SQPSK TRACKER Figure 3-6 gives a block diagram of the SQPSK demodulator implemented in accordance with the above concept. There are two I and Ds on each channel, dumped, respectively, at the I transitions and the Q transitions. The I and D outputs are used, as required by (3-17) and (3-18), to compute the error voltage from the two channels for carrier phase tracking, and also to derive the error voltage for bit tracking. The bit transitions in the output data streams are detected by appropriate transition detection logic and used to correct the error voltage for bit tracking bit. Note that the second I and D in the I channel, which is dumped by Q timing, contains the bit tracking information for the I bit transitions, and vice versa in the Q channel. It is assumed that the carrier frequency error is initially small so that a false lock does not happen. A feature of the loop is that a $\pi/2$ phase slip is not stable as long as the bit timing does not change very much during the slip^[9]. #### 3.6 COMPUTER SIMULATION RESULTS The question now is whether pull-in from an arbitrary θ , τ initial state will take place. To understand how pull-in can take place, note that the maximum initial time error is 0.5, where unity denotes the symbol duration on either channel. The maximum initial phase error is $\pi/4$, since initial acquisition does not distinguish between the channels, and four stable tracking positions can result from the acquisition process. Alternatively, we can view the maximum initial time error as 0.25, with the maximum initial phase error being $\pi/2$. Figure 3-6. Block Diagram of SQPSK Demodulator A computer simulation was performed by programming (3-16) to be valid over the range -.5 < τ < .5. The error voltage for carrier tracking was derived from (3-17) and (3-18), and the error voltage for bit tracking was derived from I_D and Q_D by detecting apparent bit transitions. Noise of variance $\sqrt{N_0/2E_b}$ was introduced on each channel with the bit amplitudes normalized to unity. Each iteration moves time by 0.5; hence, the noise on each channel is represented by the sum of two Gaussian variables, the second of which is reused on the next iteration. It should be noted that the simulation is valid only if θ varies slowly with respect to the bit rate, but this is typically the case for the tracking bandwidth of interest. A second-order carrier loop and a first-order bit loop were used in the simulation. Figure 3-7 shows typical acquisition results when the time error and phase error are taken with respect to one of the two channels (arbitrarily designated). The acquisition limit is where pull-in usually went to the designated channel, rather than the other channel. The dotted line is drawn to best fit the observed pull-in behavior, while including the total uncertainty region (area equal to 0.5 bit multiplied by $\pi/4$ radians). The figure clearly shows that pull-in will always take place even at E_b/N_o = 0 dB, for the indicated loop bandwidths, B_{phase} = .001 and B_{phase} = .001. With $B_{phase}=.01$, a phase slip was observed after a few bits at $E_b/N_o=0$ dB; hence, this bandwidth is too wide. With $B_{timing}=.0001$ and $B_{phase}=.001$, an initial phase error of $\pi/2$ with $\tau=0$ was reduced to zero while the timing error remained small, verifying that $\pi/2$ slips are unstable as long as the timing is disturbed only slightly. However, if B_{timing} is widened to .001, the timing was pulled to $\tau=.5$. Thus, the timing loop should be made narrow compared to the phase tracking loop, once acquisition has taken place, in order to eliminate $\pi/2$ phase slips which would cause loss of bit integrity. Figure 3-7. Acquisition Limit to Designated Channel #### 3.7 CONCLUSIONS A scheme for acquiring and maintaining SQPSK carrier phase and bit synchronization simultaneously has been described, and will function at $E_b/N_o\cong 0$ dB. Integrate and dump filters are utilized, and they perform the three functions of demodulating data, deriving an error voltage for carrier phase tracking, and deriving an error voltage for bit tracking. The double, interacting loops will pull in from an arbitrary θ , τ initial condition, provided that the frequency error is negligible. After acquisition, the bit tracking loop should be made tighter than the carrier phase tracking loop, so that $\pi/2$ slips are unstable. #### SECTION IV ### TDRS USER TRANSPONDER OPERATION WITH REMOTE GROUND STATIONS From an operational standpoint, it is desirable to extend the capability of the S-band single access transponder to include operation with a remotely located ground station. Three separate approaches for implementing this capability were considered: - a. Addition of a TDRS Receiver-Transmitter. - b. Addition of a simplified TDRS R-T equipment at each remote ground station and a modified transponder with time shared search mechanisms for acquiring either a FH TDRS signal or a PN remote ground station signal. - c. Modification of a user transponder to detect, acquire and transpond STDN signals from an unmodified remote ground station. In summary, the first two approaches were ruled out in favor of the third approach for (1) economic reasons and (2) the relative ease of modifying the user transponder design for compatibility with a STDN signal. The three approaches are briefly described in the following paragraphs. # 4.1 REMOTE GROUND STATION EQUIPMENT REQUIREMENTS FOR COMPATIBILITY WITH TDRS USER TRANSPONDERS Basic functions of a remote ground station receiver-transmitter compatible with a S/A user transponder are shown in figure 4-1. The receiver portion consists of a code tracking loop for demodulating the spread spectrum portion of the signal and a carrier tracking loop for demodulating the data from the signal. The transmitter portion consists of a frequency hop synthesizer for generating a FH preamble during initial acquisition and a PN sequence generator for modulating the transmit carrier during track. Note that all frequency synthesis is referenced to a station frequency reference (5 MHz). Transmit carrier offsets are synthesized by a "digital VCO" which is a rate multiplier operating in conjunction with an incremental phase modulator. Receiver center frequency offsets (to compensate for the anticipated return link doppler) are generated from the same type of mechanism. Figure 4-1. Ground Receiver-Transmitter Block Diagram Range rate data are extracted from the digital filter of the carrier loop. Basically,
this data is gathered by accumulating the carrier loop error signals (digital words at a fixed iteration rate) over a period of 1 or 10 seconds. The accumulated word is then scaled so that the digital-output word is in terms of meters/seconds. Range measurement is accomplished by counting the accumulated difference between receiver and transmitter code clock increment commands (±1/96 chip steps). This accumulated difference is then scaled so that the digital word output is in terms of meters. For users whose telemetry data is modulo-two added with a PN sequence, data is demodulated with a Costas demodulator after the pseudorandom sequence has been stripped from the signal. For users employing a clear mode for data along with a minimum power PN ranging signal, data is downconverted in a separate PSK IF chain and synchronously detected using a coherent I channel reference from the PN carrier tracking loop. For users employing a clear mode for data in the return link without a ranging signal, the PN local reference of the PN carrier loop is gated "off" and the data is extracted in the Costas demodulation. If quadriphase shift key modulation is employed in the return link, a separate QPSK demodulator must be used. #### 4.1.1 CONCLUSION Technically, there is no reason why a remote ground station could not be modified to operate with a TDRS user transponder. The R-T equipment would be almost identical to the proposed TDRS ground R-T. There is little doubt that the signal interfaces of this additional equipment could be integrated into existing ground stations and that operational procedures could be established for acquiring and tracking ing a TDRS user satellite. User transponder tracking bandwidth could be increased, after acquisition, to track the increased doppler rate of change at perigee, since the received signal power tends to be maximum at this point. The directive ground antenna would also make interference from other TDRS signals negligible. The major disadvantage of this approach is the high cost of modifying existing ground stations and the maintenance of additional equipment. # 4.2 TIME DIVISION MULTIPLEXING FOR REMOTE STATION OPERATION The R-T equipment required for remote ground station operation (as described in section 4.1) could be simplified. The frequency hop preamble required for 20 second acquisition in the TDRS link could be eliminated from the waveform of a remote station link due to the 60 dB S/N advantage offered by STDN type stations (compared to TDRS satellite S/N ratios). The impact of this approach would be a modified user transponder with a time shared search mechanism for acquiring a FH TDRS signal or a PN remote ground station signal. The transponder could be programmed to perform a normal FH search for 11 seconds (the probability of acquiring a TDRS signal in 11 seconds is 0.97) and then switch to a very fast PN search for 1 second (a 300 kilochip 1 second search rate would allow a complete scan of an 18 stage PN code in 1 second). #### 4. 2.1 CONCLUSION For this approach, no substantial implementation problems are anticipated. A 10% code slewing rate is not difficult. Doppler uncertainties fall well within the sync decision bandwidths. The performance impact on the TDRS forward link would be acquisition performance. Since the FH acquisition strategy allows for several passes through the FH preamble period of 11 seconds, an occasional 1 second signal loss for a remote ground station signal search would result in a slight decrease in the probability of FH signal detection. The major disadvantage to this approval is the high cost of modifying existing ground stations and maintenance of the additional equipment. In addition, the user transponder would have to be substantially modified to accommodate (1) the wide variation in signal strength, (2) wide range of PN search rates and (3) broad range of PN tracking bandwidths. # 4.3 MODIFIED TRANSPONDER FOR USE WITH STDN GROUND STATIONS A third approach to remote ground station operation is the functional augmentation of the user transponder to enable it to work with a ground station of the Space-flight Tracking and Data Network (STDN). Since this network tracks satellites via the Goddard Range and Range Rate System, which is a tone ranging system, the PN TDRSS transponder must be modified for a compatible mode. #### 4.3.1 RECOGNITION OF STDN SIGNAL The basic requirement is to incorporate a STDN recognition function which can command the transponder to stop searching for synchronization to a TDRSS forward link signal. The strong uplink signal of STDN will make this recognition function relatively straightforward, and also eliminate any concern for Doppler and Doppler rate of change (particularly the latter when a low altitude satellite goes by directly overhead). Table 4-1 reviews the uplink propagation parameters from STDN to the satellite. It is clear that the power received from STDN is tremendous relative to that from TDRS, being about 60 dB greater for equal user antenna gains. Thus a signal from TDRS will negligibly affect S/N for receiving the STDN signal. Also, it is impossible to receive a signal from TDRS when the STDN signal is present. The STDN uplink signal has a 500 kHz subcarrier continuously phase modulated on the carrier for S-band operation. The peak phase deviations are chosen so that the carrier component is reduced by about 4 dB from the unmodulated case. The 500 kHz subcarrier tone has a deviation of about one radian. Thus a second-order phase lock loop in the transponder of relatively wide bandwidth, say 2 kHz to be within the 4 kHz sideband of the lowest tone, can track the carrier and demodulate the 500 kHz subcarrier with a loop signal-to-noise ratio of 94.4 dB-Hz - 33 dB - 4 dB \cong 57 dB. Table 4-1. Uplink From STDN | STDN Antenna Gain | 43 dB | |------------------------------------|---------------| | STDN Tx Power | 40 dBw | | RF Losses | -2 dB | | Pointing Loss | 0 dB | | EIRP | 81 dBw | | Space Loss (4,000 miles) | -176 dB | | User Antenna Gain (Worst) | -10 dB | | P _s Out of User Antenna | -105 dBw | | T _S (Antenna Output) | 824° K | | KT _s | -199.4 dBw/Hz | | P_s/KT_s | 94.4 dB-Hz | | Transponder Bandwidth B | 4.5 MHz | | P _s /KT _s B | 28 dB | Without Doppler compensation on the transmit signal, the offset due to Doppler can be ± 55 kHz. The acquisition time for pull-in of a second order loop from an offset Δf is approximately^[11] $$t_{\text{pull-in}} = 4.1 \,\Delta f^2 / B_L^3 \tag{4-1}$$ For Δf = 55 kHz and B_L = 2 kHz, $t_{pull-in}$ = 1.6 seconds. After acquisition, the phase lock loop acts as a demodulator to extract the 500 kHz subcarrier so as to detect the presence of the STDN signal. At maximum Doppler, the offset on the subcarrier is ± 19 Hz; hence, the presence of the subcarrier can be detected in a filter of minimum bandwidth equal to 40 Hz. For a peak deviation of 1 radian, (rms of .7 radian) the S/N in this filter is 94.4 dB-Hz -16 dB -3 dB \cong 75 dB, which enables exceedingly reliable detection of the STDN signal when it impinges on the user. The detection filter can be much wider than 40 Hz if desired for implementation convenience. Finally, we note that the maximum carrier Doppler rate of change f which can be tracked by a second order loop is given by $$2\pi f/(1.89 B_L)^2 \approx 1 \text{ radian}$$ (4-2) For B_L = 2 kHz (4-2) yields \dot{f} = 2.3 x 10⁶ Hz/sec, which corresponds to \dot{R} = 3 x 10⁵ m/sec². However, [12] maximum \dot{R} is 352 m/sec². ## 4.3.2 GENERAL DESCRIPTION OF USER EQUIPMENT MODIFICATIONS The single access S-band user transponder presented in Chapter 3 of the Phase I - Final Report can be modified to handle STDN signals with the addition of two modules for detecting the presence of a STDN signal and subsequently transponding it in a coherent manner. The additional circuitry and its interface with a S/A user transponder is shown in figure 4-2. Assuming that the center frequencies of a Goddard Range and Range Rate signal (GRARR) are compatible with the Rx and Tx center frequencies of the selected user transponder, common RF receiver, transmitter and L.O. synthesis sections can be used for both signals in the transponder. Separate phase locked loops (PLLs) for TDRS and STDN forward link signals are recommended because of the substantial difference in waveform structure. To receive STDN signals, the TDRS Costas loop would have to be converted to a PLL, tracking and data bandwidths would have to be extended and loop gain would have to be corrected for proper operation. Finally, by using separate PLLs, reliable performance is enhanced and a STDN mode can also be added to an "off-the-shelf" TDRS user transponder with minimal interface impact. Incoming STDN signals are routed to a STDN signal detection module from a signal splitter at the output of the 1st IF (prior to the FH/PN correlator). In the detector module, STDN signals are amplified by a 2nd IF (a 3rd IF is not required due to the high signal level with respect to TDRS signals). A PLL is used to acquire and track the GRARR carrier and, subsequently, provide a coherent frequency reference for retransmitting the signal tone package. The presence of a STDN signal is indicated by detection of the 500 kHz subcarrier which is demodulated along with the other tones by the PLL. In the STDN modulator module, the baseband tones modulate a 1.2 MHz subcarrier and this composite signal in turn linearly modulates a Tx carrier which is coherently derived from the STDN PLL. To provide a STDN mode of operation, the controller module must: (1) disable the PN or PSK modulator, (2) apply the STDN modulator and, (3) select a frequency reference from the STDN PLL instead of the TDRS PLL for RF synthesis. Accidental selection of a STDN mode is not likely because a STDN mode command requires both a locked PLL and detection of a 500 kHz subcarrier. In addition an established TDRS return link mode
will override a STDN mode command. Figure 4-2. Multiple Access User Transponder Modified for STDN Signals Details of the STDN signal detection module are presented in figure 4-3. A crystal filter is used to isolate the signal carrier. This carrier is amplitude limited prior to phase detection in the PLL. Range tones are preconditioned in a wideband AGC amplifier prior to baseband detection. After detection, they are reamplified and filtered. A separate Q channel in the PPL is used to detect the 500 kHz subcarrier. This subcarrier is subsequently bandpass filtered (BW ≈ 40 to 100Hz) and used to trigger a threshold device which provides a very good indication of the presence of a STDN signal. Detection of the 500 kHz subcarrier was used for STDN signal detection, rather than PLL lock, to prevent false detection from spurious carrier signals and unintentional jammers. #### 4.3.3 SIZE, WEIGHT, AND POWER The single access S-band transponder, modified to handle STDN signals from remote ground stations, contains two additional modules: - a. STDN Signal Detection Module - b. STDN Modulator Module 1174-3642 UNCLASSIFIED Figure 4-3. STDN Signal Detector Module The power, weight and size requirements for this transponder are summarized in table 4-2. Table 4-2. Modified S-band Single Access Transponder Size, Weight and Power | Modules | Power (watts) | Weight (oz.) | (Size (in ³) | |---------------------------|---------------|--------------|--------------------------| | Narrowband Transponder | | | | | RF Down Converter | 1 | 16 | 24 | | IF Chain | 1.5 | 12 | 24 | | Synthesizer No. 1 | 2 | 10 | 24 | | Synthesizer No. 2 | 1.5 | 10 | 24 | | Demodulator | 2 | 10 | 24 | | Sync Monitor | .5 | 6 | 12 | | Controller | 1.5 | 6 | 12 | | Modulator | 1 | 16 | 24 . | | Transmitter (100 mW) | 2 | 24 | 36 | | Post Regulator | 3 | 24 | 36 | | Chassis | -
- | 72 | 78 | | Subtotal | 16 | 206 | 318 | | Pseudonoise Assemblies | | | | | IPM | 2 | 10 | 24 | | PN Coder | 2 | 6 | 12 | | Local Reference | 1.5 | 6 | 12 | | Local Reference Modulator | 1.5 | 12 | 24 | | Subtotal | 7 | 34 | 72 | | STDN Assemblies | | | | | Detector | 1 | 10 | 18 | | Modulator | 1 | 6 | 12 | | Subtotal | 2 | 16 | 30 | | TOTAL | 25 | 256 | 420 | In summary, the Single Access S-band Transponder will require approximately 25 watts of power (assuming a 100 mW transmitter), weigh on the order of 16 lbs., and occupy 420 cubic inches in a 5 in. x 6 in. x 14 in. configuration. ## 4.3.3.1 Size The length and width dimensions of each assembly are 4.5 in. x 6 in. with a useful circuit area of 24 square inches. The height dimension varies from 0.5 in. for logic boards to 1 in. for analog and RF assemblies to 1.5 in. for the transmitter and power supply assemblies. The physical configuration of the transponder is envisioned as a tray of fixed-mount assemblies supported by a pair of rigid walls. Estimated dimensions for the transponder are 5 in. x 6 in. x 14 in. with 318 cubic inches of the 420 cubic inches apportioned to the narrowband functions, 72 cubic inches to the PN functions and 30 cubic inches to the STDN functions. ### 4.3.3.2 Weight The estimated weight for the various assemblies is itemized in table 4-2. In general, logic assemblies are lighter than analog assemblies and much lighter than "canned" RF assemblies. The heaviest item in the transponder is the chassis at 4.5 lbs. The second heaviest items are the power supply and transmitter modules at 1.5 lbs each. In summary, the transponder weight is estimated at 16 lbs. #### 4.3.3.3 Power A power estimate for the transponder is 25 watts. The largest variation in this value for potential users lies in the transmitter, since the EIRP requirements vary over a range of 30 dB. For purposes of an estimate, a 100 mW transmitter requirement was assumed. Variation in power supply requirements from satellite to satellite also poses somewhat of a problem in estimating power requirements for the transponder. For this estimate, power supply regulation was assumed for all receiver and PN functions with an average operating efficiency of 80%. ## 4.3.4 MODULE SPECIFICATIONS ## Detector Module IFs Bandwidth 1st 10 MHz 2nd 5 MHz 3rd PPL Type 2nd order loop B_L 2 kHz nominal Predetection Bandwidth Offset at Tx 100 kHz nominal 5 MHz No offset at Tx 17 kHz Subcarrier Detector Bandwidth 100 Hz nominal P_d >.99 Modulator Module Type Linear Subcarrier Frequency 1.2 MHz nominal Input Sensitivity 1 volt/radian Impedance 1000 ohm Output Level -10 dBm RMS Impedance 50 ohm resistive ## 4.3.5 OPERATIONAL PROCEDURES Assuming that an S-band S/A user transponder has been modified to operate with TDRS or STDN signals, the following operational procedures should be followed to establish a STDN transpond mode of operation from a remote STDN ground station: a. Select the appropriate RF frequencies compatible with the forward and return links of the desired user transponder. - b. Offset the transmit frequency to accommodate the Doppler offset and point the ground transmitter antenna. - c. Begin a STDN uplink transmission with a signal which has a 500 kHz subcarrier continuously phase modulated on the carrier (other tones may also be present). - d. User transponder acquires STDN signal within 2 seconds (if a normal TDRS forward link is established, it will be disrupted due to the relative signal strength of the STDN signal). - e. User transponder begins a STDN transpond mode. (If a normal TDRS return link has been previously established, a STDN transpond mode will be disallowed until the TDRS return link transmission is completed.) - f. At the STDN ground station, acquire and track the return STDN signal from the user transponder. - g. The user transponder will automatically revert back to a normal TDRS mode of operation when the STDN forward link signal is discontinued or disrupted. #### SECTION V # TABULATION OF CODES FOR MULTIPLE ACCESS AND S-BAND SINGLE ACCESS USERS This section provides a listing of frequency hop and PN codes for the multiple access and S-band single access services. Parameters and generation techniques are as recommended in the Phase I - Final Report. All codes have a period which is a power of 2. Since a maximal linear code sequence generator has a period of the form $K=2^k-1$, an extra chip must be inserted when this generation technique is utilized. This can be done conveniently by recognizing the unique string of k-1 0's in the period and inserting an extra 0 at this point in the period. The code generator is simply inhibited from shifting for one clock when the string of k-1 0's occurs. ## 5.1 FH CODE FOR MULTIPLE ACCESS FORWARD LINK The frequency hopping code for the forward link of the multiple access source has a period of 256 chips and a hopping rate of 3.006 kHz. A primitive root generation technique is utilized, so that the sequence of frequencies (represented by numbers in the range from 0 to 255) for the nth code is computed according to $$f_i^{(n)} = [(3^i \mod 257) - (27^i \mod 257)] \mod 256$$ (1) The mod p function means to add or subtract p until the result is in the range 0 to p-1. Table 5-1 is a computer printout of 30 different codes generated according to (1). The sequence of frequency numbers is read horizontally across the table. ## 5.2 PN CODES FOR MULTIPLE ACCESS The forward and return links of the multiple access service use staggered quadriphase PN, generated by two different maximal binary codes. The code pair biphase modulates carriers phase shifted by 90° , and the clocks are displaced by a half chip. The period is $2^{18} = 262143$ chips, and the chip rate is 3.078 MHz. Table 5-1. Printout of FH Codes for Multiple Access | 103
110
129
212
153 | 0UEN
114
228
10
137
142
28
246
119 | 61
127
135
195
187
129 | 254
225
203
151
31
53 | 58
162
91
183
198
94 | 103
204
164
116
153 | 190
143
149
251
66
113 | 100
138
43 | 798
182
205
56
158
74 | 210
216
63
252
46
40 | 190
167
49
226
66 | 203
156
194
53
201 | 158
150
145
56
98
106 | 38
250
143
20
218 | 175 | 42
35
110
61
214 | 84
185
140
196
172 | 94
174
173
116 | 76
206
18
146
180 | 12
2
148 | 34
254
155
1 | 48
34
114
145
208 | 227
183
147
156 | 124
115
234
160 | 187
110
26
80 | 140
182
248
152
116 | 53
97
223 | 191
165
171
40
65
91 | 181 | 187
216
38
230
69
40 | 103
150
23
171
153
106
233
85 | 66
74
26
44 | |---|--|---|--|--|---|---------------------------------------|--|---|-------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------|---|---------------------------------|--------------------------------------|---------------------------------|-------------------------------------|--|--------------------------------------|------------------------------------|---------------------------------|--------------------------------------|------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|---|-------------------------------------
--|---------------------------------------| | 108
102
106
113 | 158
219
213
558 | 200
111
39
192
56
145
217 | 152
74
113
49
104 | 131
197
230
228
125
59
26 | 18
122
74
238
134
166 | 208
214
180
118
48
42 | 166
165
145
71
90 | 157
165
137
41
99 | 15
23
104
224
241 | 240
110
78
86
16
146 | 12
58
168
242
244
198 | 231
212
67
142
25 | 135
125
153
59
121 | 212
121
216
227
44
135 | 80
186
204
180
176 | 177
108
68
174 | 215
80
216
41 | 160
29
77
125
96
227 | 177 | 104
246
112
152
236 | 139
141
29
58
117 | 114
245
138
120
142 | 157
246
248
216
99
10 | 50
76
146
50 | 40
36
174
113
216
220 | 152
239
25
140
104 | 65
171
195
136
191 | 93 | 125
221
57
53
131 | 255
247
157
197
199
59 | 142
121
214
25
114
135 | | 37
75
254
195
219
181
2 | | 98
216
205
90
158
40 | 225
109
252
94
31
147 | 46
115
156
186
210
141
100 | 36
193
121
197
220
63
135 | 180
103
245 | 225
148 | 235
220 | 214
214 | 122
49
113
90
134
207
143
166 | 224
139
235 | 106 | 183
64 | 54
90 | 78
178
172 | 28
218
15
210 | 124
38
139
237 | 115
106
128 | 155
37
101
34
101
219
155
222 | 195
127
161 | 26
203
20 | 147
120
152
176 | 20
212
112
186 | 186
72
11
50
70 | 139
178
232
88
117
78 | | 73
158
23
179 | 65
31
117
191
225
139
237 | 83
157
34
157 | 67
204
129
238
189
52 | 105
150
26
118
151 | | 176
117
166
96
80
139 | 92
236
18
176
164 | 171
251
88
135
85
168 | 140
27
178
52
116
229
78 | 186
187
53
192
70 | 8
82
186
204
248
174
70 | 195
162
228
57
61
94 | 203
40
164
209
53 | 29
163
129
227
93 | 147
217
64
12
109
39 | 194
157
145
251
62 | 65
14
245
36
191 | 158
253
211 | 230
35
41 | 218
218
8 | 219
19
194
232
37 | 112
41
74
189
144
215 | 115
190
184
177
141 | 185
128
219
183
71 | 208
205
14
128
48 | 82
189
152
245
174
67 | 59
78
34
78
197
178 | 86
16
146
246
170 | 176
66
38
147 | 184 | 13
184
0
184 | 183
62
105 | 171
82
92
237
85
174 | 5 | 42 | 63
188
65
239
193
68 | 30
187
221
53 | | 74
222
76
250
192
34 | | 86
169
14
93
170
87
242 | 158
209
175
158
157 | 36
75
252
60
220
181 | 23
141
169
136
233
115 | 87
240
27
20
169 | 146
69
24
159
110 | 166
141
57
162
90 | 131
23
153
214 | 69
167
184
154
187 | 209
88
143
47 | 196
73
21
215 | 207
228
102
37
49 | 152
194
49
185
104
62
207 | 138
173
148
214 | 118
125
136
189 | 137
25
39
107
119 | 235
134
96
236
21 | 14
196
234
241
242 | 64
166
45
141 | 44
154
48
78
212 | 196
198
107
90
60 | 96 | 78
154
82
77
178 | 90
134
206
75
166 | 81
124 | 216
118
85
244
40 | 233
20
52 | 38
130
207
139
218 | | | | 147
215
39
109
255
41 | 45
45
21
188
211 | 104
240
45
216 | 130
243
18
182 | 51
134
235
248
205
122
21 | 171
219
224
99
85
37
32 | 227
34
226
49
29
222 | 184
162
149
81
72
94
107 | 188
50
247
208
68
206
9 | 173
141
62
56
83 | 180
236
106 | 104
96
207
105
152 | 188
41
149
217
68 | 248
135
244
91
8 | 128
244
83
234
128 | 119
189
120
193
137 | 140
216
247
119
116 | 244
196
208
16 | 41
125
60
93
215 | 145
210 | 30
15
22
226 | 154
80
178
102 | 82
82
247
174 | 214
120
218
107
42 | 32
104
165
16 | 119
95
153
29
137
161 | 229
34
228
185
27
222 | 88
7
50
66
168 | 235
200
26
169
21
230
87 | 212
22
166 | | 108
242
184 | Table 5-1. Printout of FH Codes for Multiple Access (Continued) | FREQUENCY HO
62 86 76
175 116 129
141 76 110
253 144 223
194 170 180
81 140 127
115 180 146
3 112 33 | 145 199 55
46 212 1
1 34 16
114 211 125
111 57 201
210 44 24
255 222 89 | 5 179 1
3 99 1
7 229 2
8 61 1
1 77
3 157 1 | 18 147
 230 122
 148 218
 83 107
 138 109
 26 134 | 248
112
154
114
144 | 138
159
18
99
68 | 149
96
64
79
107
160 | 241
229
204
35 | 249
71
194
223
7 | 233
205
39
30
23 | 133
141
24
231
123
115 | 228
247
131
160
28 | 127
187
172
129
206 | 196
172
139
116 | 167
111
74
89
145 | 140
212
232
122 | 177
40
138
240
79 | 139
88
24
178
117 | 254
240
195 | 29
245
51
183 | 133 | 49
81
160
166 | 84
247
242
67
172 | 92
108
240
48
164
148 | 98
113
139
124 | 119
223
187 | 247
31
111 | |---|--|---|---|---|---|--|---------------------------------------|---------------------------------------|---|---------------------------------------|--|--|--|---|---|-------------------------------------|-------------------------------|---|-------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|---|--| | FREQUENCY HO
80 58 91
246 8 188
172 141 93
120 151 155
176 198 165
10 251 68
84 115 163
136 105 101 | 37 83
124 6 78
56 233 177
77 240 140
219 173 249
132 250 178
200 23 86 | 7 168 1
9 55 2
0 54 1
0 128 1
9 88 1
8 201 | 134 97
215 195
105 61
158 231
122 159 | 30
7
248
233
226 | 186
151
242
227
70 | 227 | 7 | 148
245
170 | 227
130
141 | 195 | - 71 | 201
228
96
75 | 170
59
138
3
86
197
118
253 | 221
221
189 | 207 | 51
46
162
80
205 | 250
158
200
205 | 255
125
17
63
1 | 123
77
31
130 | 36
20
111
114
220
236 | 45
96
167
211
191 | 232
73
57
94
24 | 247 | 11
11 | 172
172
114
26
84
142
230 | 47
173
245
196
209
83
11
60 | | FREQUENCY HO
52 73 239
135 64 10
237 124 148
127 83 118
204 183 17
171 192 246
19 132 108
129 173 138 | 177 35 251
174 71 34
255 236 25
106 252 20
79 221
82 185 22 | 2 129
4 152
1 185
7 138 1
4 127 1
2 104 2 | 82 234
7 233
44 212
171 69
174 22 | 255
216
105
228 | 192
149
113 | 216
30
200
77
40 | 129
58
217
232
127 | 18
170
80
25
238
86 | 78
45
54
118
178 | 111
186
108
145
202 | 184 | 23
147
65
198
233
109 | 248
185
47
41
8 | 166
107
58
196 | 32
38
47
149
224 | 219
208
40
102
37
48 | 245
255
177
23
11 | 89
96
3
43
167
160
253
213 | 54
86 | 32
47 | 193
147
167
194 | 230 | 157 | | 98
72
111
166 | 118
204
112
178
138
52
144
78 | | 189 35 133
62 114 196 | 129 24 213
239 27 131
2 61 126
118 63 213
127 232 123
254 195 136 | 3 77 2
1 200 | ?19 106
45 23 1 | 230
40
123
247
26
216
133 | 164
216
15
208
92
40
241
248 | 109
134
37
81
147
122
219
175 | 184
151
149
72
162
105 | 109
21
251
194
147
235 | 238
25
140
36
18
231
116
220 | 144 | | 179 | 58 | 220
40
113
82
36
216
143
174 | 19 | 157 | | 172 | 154
201
13
58
102 | 180
86
118
142
76
170 | 105
48
28
152
151
208 | 128
20
203
202
128 | 53
208
130
122
203 | 253
66 | 129
195
93
95
127 | 206
249 | | 16 192 125
19 122 94
22 75 159
41 151 181
240 64 131
237 134 162
234 181 97 | 118 241 16
195 124 17
83 192 6
185 73
23
138 15 93
61 132 73
173 64 191
71 183 26 | 7 214
7 238
7 19 1
7 18 2
1 237
5 11 | 91 220
43 177
187 245
233 200
165 36
213 79
69 11
23 56 | 30
58
119
182
226
198
137 | 217
171
92
39
85
164 | 254
204
59
172
52
197 | 185
2 | 252
83
242
158
173 | 182
58
15
50 | 122
151
64
134
249
105 | 145
167
4
182
111
89
252 | 122
143
149
134
234
113 | 138
188
140
11
118
68
116 | 198
208
19
216 | 108
213
199
191
148
43
57 | 227
254
91
85
29
165 | 148
162
180 | 107
168
34
167
149
222 | 90
236
16 | 92
243
235 | 202 | 173 | 215 | 104
137
235
125
119
21 | 121
206 | | | 51 87 226
157 199 192 | 214 131 216
195 86 68 | 7 236 2
5 -11 2
8 213 1
6 170
9 20
245 | 245 5
228 68
140 3 | 13
196
233
173
243
60 | 94 | 87
171
217
90 | 55
205
184
192 | 214 | 237
170
44
79
19 | 246 | 146
240
86
246
110 | 149 | 145
140
156
210 | 24 | 77
217
252
202
179 | 17 | 164
71
109
98
92 | 238
176
196
140 | 133
254
254
119 | 81
251
254
115 | 244
154
247
57
102
199 | 119
131
32
250
137
125 | 10
33
197
133
246
223 | 169
144
7
106
87
112 | | 51
43
112
205
242 | Table 5-1. Printout of FH Codes for Multiple Access (Continued) | FREQUENCY HOP CODE NUMBER= 51 46 25 27 70 170 200 131 213 178 84 210 215 132 221 206 50 153 26 708 52 63 154 236 208 180 36 120 205 210 231 229 186 36 56 125 43 78 172 46 41 74 35 50 206 103 230 48 204 193 102 20 48 76 220 136 | 226 38 228 1 73 218 28 1 145 218 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 93 121 251 72
76 182 105 148
121 228 195 180
9 78 69 120
63 135 5 184
80 74 151 108
35 28 61 76
47 178 187 136 | 77 6 140 6
9 91 147 152 5
9 96 48 8 20
5 70 182 25
8 179 250 116 16
6 165 109 104 20 | 64 38 243 130 70
55 51 158 124 122
07 164 5 149 209
52 219 241 233 11
92 218 13 126 186
91 205 98 132 134 | 246 17 35 186 2
142 99 235 8 1
136 134 149 216
206 28 8 115 1
10 239 221 70 | 80 150 75 152 232 250 | |--|---|---|---|--|---|--| | FREQUENCY HOP CODE NUMBER= 40 7 229 164 198 28 221 87 54 226 122 209 161 10 46 81 245 48 18 249 131 164 249 46 148 199 179 216 249 27 32 58 228 32 169 202 30 134 48 95 246 210 175 11 208 238 7 125 126 92 7 210 108 57 77 | 23 183 59 2
28 30 174 69
128 167 69
250 145 239
233 73 197
228 26 82
128 89 187 2 | 19 215 224 48
27 103 161 34
0 92 189 46
27 191 231 145
37 41 32 208 | 233 153 58 6
154 72 142 22
1236 166 204 15
1 80 120 204 25
2 23 103 198 19 | 60 185 205 108 204
26 190 193 85 24
75 67 222 234 38
54 121 193 130 38 | 3 201 162 93 1
94 29 114 42
38 118 205 189 1 | 72 5 228 39 126 55
124 42 210 100 74 207
23 34 185 225 19 253 | | 184 102 8 120 154 245 221
177 20 140 40 59 72 208
140 177 87 14 55 2 208
255 45 146 220 200 207 238
72 154 248 136 102 11 35
79 236 116 216 197 184 48 | 168 14 95 1
98 121 61 6
150 18 131 1
85 60 230
88 242 161
158 135 195 | .52 78 124 147 | 50 48 246 3
5239 59 63 19
178 206 161 25
0 76 188 27 15
206 208 10 15
17 197 193 | 52 122 129 156 141
79 48 223 5 252
57 45 197 238 126 | 45 216 38 11
105 128 247 75 1
245 250 196 227
128 235 23 158
211 40 218 245 | 122 25 149 81 46 215
176 198 113 150 178 78
79 193 191 68 138 122
152 27 62 216 122 218
134 231 107 175 210 41
80 58 143 106 78 178
177 63 65 188 118 134
104 229 194 40 134 38 | | 116 171 132 81 138 149 230
153 15 55 177 114 53 65
51 164 18 106 179 154 93
24 116 250 190 18 56 221 | 255 50 39 2
189 8 94 1
1 1 80 6 1
- 0 51 244 1
1 206 217
67 248 162 1
255 176 250 1 | 15 234 223 21
24 179 157 182
34 138 173 128
53 122 167 216
41 22 33 235 | 218 242 87 17
145 64 197 24
56 225 187 18
98 11 131 16
38 14 169 8 | 41 216 15 91 3
84 58 200 17 243 | 90 174 161 18
32 213 229 103 1
210 76 125 82
245 53 248 93
166 82 95 238 2 | 159 253 56 153 3 209
11 156 220 80 205 132
137 135 178 8 133 1
175 153 57 110 254 200
97 3 200 103 253 47
245 100 36 176 51 124 | | FREQUENCY HOP CODE NUMBER= 86 220 96 171 130 247 250 14 138 208 150 193 14 128 11 163 173 160 215 171 81 247 239 218 236 165 144 236 170 36 160 85 126 9 6 242 118 48 106 63 242 130 245 93 83 96 41 85 175 9 17 38 20 91 112 20 | 35 250 69 2
76 41 213
63 211 228
247 65 108
221 6 187
180 215 43
193 45 28 | 34 65 163 88
60 196 197 6
14 97 7 238
241 179 159 67
22 191 93 168 | 7 156 83 163 17
8 150 198 244 22
75 251 119 12
1 177 115 112 16 | 71 99 119 96 179
25 42 172 245 48
20 129 61 119 170
61 76 208 114 112
85 157 137 160 77 | 193 234 73 146 2
48 41 168 206 2
117 195 1 88
36 5 236 23
63 22 183 110 | 3 153 8 102 99 104
214 196 59 234 134 148
230 185 232 147 215 145
245 251 226 19 172 53
253 103 248 154 157 158
42 60 197 22 122 108
26 71 24 109 41 111
11 5 30 237 84 203 | | 12 84 36 105 7 105 13
3 204 252 237 237 22 143
215 146 21 31 0 59 227
42 178 139 32 237 178 226
244 172 220 151 249 151 242
253 52 4 19 19 234 113 | 235 24 108
109 160 113 1
194 177 82 1
5 185 34 1
21 232 148 2 | 20 71 69 93
18 220 75 25
45 193 29 61
42 49 247 129
36 185 187 163 | 28 245 228 5
101 183 55 19
25 96 113 18
2 3 97 19
2 28 11 28 20 | 63 11 29 235 105
51 199 70 34 6
91 246 163 46 255
88 34 103 79 194
93 245 227 21 151
05 57 186 222 250 | 171 48 100 169
99 223 242 196 2
221 116 177 201 3
32 213 200 55
85 208 156 87 | 99 57 116 147 183 213 | Table 5-1. Printout of FH Codes for Multiple Access (Continued) | 122 255 72 122 171 50 241 125 111 92 142 98 94 51 33 119 126 52 92 90 131 237 127 208 94 158 8 53 170 66 161 157 86 143 150 142 26 247 193 123 85 215 108 165 6 171 150 271 120 120 120 120 120 120 120 120 120 12 | | |---|---------------------------------------| | 93 152 59 200 142 58 4 48 88 37 149 218 44 110 249 132 158 215 106 106 166 22 239 21 207 170 74 15 109 29 183 42 123 61 10 241 25 165 128 159 86 156 57 44 44 69 47 219 141 60 94 192 201 16 81 54 147 241 155 210 199 216 123 104 95 110 150 215 240 14 173 230 32 238 208 18 59 55 211 106 142 73 115 136 110 199 92 210 82 18 66 8 34 181 0 163 37 162 64 105 51 169 116 20 117 170 739 725 190 243 154 19 175 133 9 112 60 210 104 68 68 77 78 28 215 | 35
207
44
116
221
49 | | 103 104 197 36 114 198 252 208 168 219 107 38 212 146 7 124 98 41 150 150 90 234 17 235 49 86 182 241 147 227 73
214 133 195 246 15 231 91 128 97 170 100 199 212 212 187 209 37 115 196 162 64 55 240 175 202 109 15 101 46 57 40
133 152 161 146 106 41 16 242 83 126 224 18 48 238 197 201 45 150 114 183 141 120 146 57 164 46 174 238 190 248 222 | 76
114
186
170
180
142 | | 233 193 122 153 18 144 65 227 33 254 94 154 120 40 217 215 129 24 242 125 1 184 71 24 57 228 116 94 105 191 21
200 126 202 172 25 181 94 156 179 136 37 116 255 2 141 212 109 151 100 196 122 68 73 228 104 21 92 31 160 232 197
232 91 78 28 176 184 31 109 193 250 39 143 52 175 40 51 89 81 104 157 141 250 220 176 2 115 203 145 191 101 101 | 155
173
165
86
101 | | 272 233 | 232
224
112
131
24
32 | | 73 39 139 13 101 177 242 68 90 19 218 147 65 241 196 155 112 232 230 135 17 60 114 51 181 44 199 93 35 198 51 238 253 83 162 222 168 113 11 90 39 253 11 59 107 3 80 101 148 114 170 234 218 128 235 252 266 118 136 205 222 27 134 92 130 46 101 104 28 45 109 168 15 124 221 132 143 198 40 17 16 131 64 47 80 164 187 241 255 157 165 199 88 198 207 219 113 218 243 117 223 245 30 248 156 217 248 62 19 174 83 217 74 239 148 243 214 50 19 118 201 99 | | | 211 22 63 31 120 239 50 49 20 147 249 138 80 246 78 66 31 210 191 28 18 71 158 17 48 63 58 234 39 124 77 | 230
136
226
151
26 | Table 5-1. Printout of FH Codes for Multiple Access (Continued) | <u>243 131 129 146</u> | 84 34 12
10 185 147
249 89 15
48 70 10
172 222 129
246 71 112
7 167 10 | 7 28 62
48 56
3 207 15
0 56 48
2 28 194
2 208 200 | 106 213
105 155
50 28
163 4
150 43
151 101
206 228
93 252 | 147 18
30 18
130 12
199 7
226 17
126 13
57 23 |
184
136
248
107 | 199 236
15 147
190 209
1 52 3 5 | 242
111
80
222 | 171
161
69
227 | 125
207
135 | 127
138
3 | 58
142
205 | 21
26
26 | 191
178
27
27 | 74
70
19
78 | 32
223
101
153 | 185
106
197
205
71 | 17 | 101
59
127
155
197 | 38
145
131
126
218 | 824
154
24
174
1072
1732 | 30
57
51
183 | 167
221 | |---|---|---|--|---|-----------------------------------|---|---|--------------------------------|-------------------------------|--|-------------------------------|---------------------------------|------------------------------|--------------------------------------|--------------------------------------|--|-------------------------------|--------------------------------------|--|---|-----------------------------------|---| | 107 57 187 170
124 79 36 78
59 33 66 78
24 10 155 241
149 199 69 86 | 62 211 2
178 123 241
155 94 31
182 89 38
194 45 23
78 133 13
101 162 225
74 167 220 | 47 61
124 55
254 255
244 240
209 195
132 204
2 1 | 132 185
234 121 | 28 16
45 20
4 3
60 3 | 142
221 2
74 1
181 1 | 66 243
253 175 | 174
96 | 134
13
247 | 154
67 | 174
139
186 | 125
153
249 | 141
149
60 | 235 | 73
168
189
237
183
88 | 95
95
103
161 | 253
226
13
83
30
243
173 | 133 | 178
110
204
172 | | 255
193
83 | 92
48
15 | 235
156
50 | | 86 132 107 177
33 115 211 48
85 54 132 100
159 190 192 166
170 124 149 79
223 141 45 208 | 239 107 42
116 220 61
160 228 76
201 115 224
17 149 214
140 36 199
96 28 178
55 141 32 | 46 34
120 200
238 85
180 55
210 222
136 56
18 175
76 201 | 33 83
95 223
135 152
91 23
223 173 | 225 12
177 10 | 106 2
203
150
247 | 73 175
25 160
230 5
56 243
183 81 | 72
137
204
199
184
119 | 27
163
129
197
229 | 66
166
115
20
190 | 255
206
197
238 | 135 | 80
162
112
137 | 93
197
193 | 136
61
239 | 237
157
120
93 | 49
72
62
175
207
184 | 184
58
16 | 200
201
59
102
56 | 151
155
221
89
105 | 246
157
196
189 | 223
62
71
7
33
194 | | | 196 196 232 28
228 138 13 182
91 139 89 67
60 150 154 179
60 60 24 228 | 135 126 41
213 40 57
38 19 62
227 47 160
121 130 215
43 216 199 | 19 76
12 112
64 238
251 172
237 180
244 144
192 18 | 197 150
30 117 | 31 246
57 16
51 56
251 74
225 16 | 16
231
114 1
85
240 2 | 5 138
10 12
71 183 | 107
15
166
64
149
241
90
192 | 175
177
132
226
81 | 233
126
64 | 115
130
216
236
141
126
40
20 | 148
244
104
120 | 231
231
29
25 | 221
199
201 | 203 | 222
216
73
41 | 126
123
220
130
133 | 169
202 | 51
116
228
11
205
140 | 229
142
119
78
27 | 198
213
163
58
252 | 182
41
144 | 225
118
25
97
31
138
231
169 | | 156 172 233 27 | 154 125 14
33 36 209
85 3 144
159 239 231
102 131 242
223 220 51
171 253 112 | 61 181
180 22
221 136
112 18
195 75
76 234
35 120 | 124 235
251 199
42 214
24 170 | 236 161 | 5 5 5 F | 24 167
18 128
93 133 | 112 | 176 | 223
234
13 | 32
93
187 | 225 | 101 | 173
107
253
160 | 185 | 36
17
163
118
220
239 | 148
214
120
150 | 190
82
111
244
66 | 113
107
192
124
143 | 211
104
156
175
152
100 | 164
124
183
44
92
132 | 244
213
148 | 68
83
628
188
2573
194 | | 18 210 245 55
116 207 104 149 | 153 98 56
29 184 117 | 166 216
90 161
119 181
214 201
90 40
166 95 | 190 209
209 217
77 128
116 183 | 67 29
91 102 | 167 2
68 2
233
47
89 | 34 176
43 68 | 123
128
157 | 252 | 217
175
39 | 151
55
36
189 | 210
235
68
233
46 | 131
245
155
248
125 | 232
86
169
81
24 | 153
129
254
250
103 | 108
18
48
198 | 255
129
33
59 | 74
181
46
224
182 | 248
91
12
135 | 70
20
145
182
186 | 50
144
144
238
206 | 185
166
233
145 | 198
107
107
158
58
246
149 | Table 5-2 is a listing of 30 pairs of maximal code sequence generators for the forward link. The codes are represented by a polynomial expressed in conventional octal notation. The corresponding binary number specifies the nonzero coefficients of the polynomial defining the tap connections; e.g., This example feeds back the mod-2 sum of the 14th, 17th, 18th, and 19th stages to the first stage of the shift register generator. Alternatively, as described in the Phase I - Final Report, a modular generator configuration can be used which has mod-2 adders between the register stages. Then, the binary number specifies where mod-2 adders must be located. (The leftmost 1 specifies feedback to the first stage. The rightmost 1 specifies feedback from the last stage. The remaining 1's denote where mod-2 adders must be inserted.) Table 5-3 is a listing of 30 different code pairs for the multiple access return link. There is a return-only mode which utilizes staggered quadriphase PN codes of a shorter period. A listing of 30 code pairs of period $2^{11} = 2048$, $2^{13} = 8192$, or $2^{15} = 32768$ is given in table 5-4. It should be noted that one code of the pair can be arbitrarily shifted with respect to the other. For convenience, both can be started together with the same register contents, say, all 1's. ### 5.3 FH CODE FOR SINGLE ACCESS The frequency hopping code for the S-band single access service has a period of 512 chips and a hopping rate of 6.012 kHz. The FH sequence is generated by a maximal binary sequence generator. At each successive shift, the shift register contains a number, in binary form, over the range from 0 to 511, and this specifies the frequency number. Table 5-5 lists 20 polynomials to be used for FH code generation. ### 5.4 PN CODES FOR SINGLE ACCESS The PN codes for single access are staggered quadriphase with a period of $2^{19} = 524287$ chips and a chip rate of 6.156 MHz. Table 5-5 lists 20 pairs to be used for PN code generation on the forward link. Table 5-6 lists 20 additional pairs for the return link. Table 5-2. MA 18-Stage Forward PN Pairs (octal polynomials) | 1 | ٠. ا | 0 | 0 | 0 | 0 | 4 | 7 | * | | 1 | 0 | 0 | 1 | 7 | 2 | 7 | Augment period by one chip | |-----|------|---|---|---|-----|---|---|---|----|-----|-----|----|---|---|----|---|----------------------------| | 1 | . 1 | 0 | 0 | 0 | 0 | 7 | 7 | | | 1 | 0 | 0 | 1 | 7 | 4 | 1 | L · | | • 1 | . 1 | 0 | 0 | 0 | 1 | 1 | 5 | | | 1 | 0 | 0 | 2 | 0 | 3 | 1 | | | 1 | . 1 | 0 | 0 | 0 | 1 | 7 | 3 | | | 1 | 0 | 0 | 2 | 0 | 6 | 1 | | | 1 | . (| 0 | 0 | 0 | 2 | 0 | 1 | | | 1 | 0 | 0 | 2 | 0 | 7 | 5 | 5 | | 1 | . (| 0 | 0 | 0 | 3 | 3 | 3 | | | 1 | 0 | 0 | 2 | 1 | 3 | 3 | | | 1 | . (| 0 | 0 | 0 | 3 | 4 | 7 | | • | 1 | 0 | 0 | 2 | 1 | 7 | 1 | | | 1 | . (| 0 | 0 | 0 | - 3 | 5 | 5 | · | | 1 | 0 | 0 | 2 | 2 | 1 | 1 | | | 1 | . (| 0 | 0 | 0 | 4 | 0 | 7 | | | 1 | 0 | 0 | 2 | 2 | 4 | 1 | | | 1 | . (| 0 | 0 | 0 | 5 | 1 | 7 | | | 1 | 0 | 0 | 2 | 4 | 4 | 1 | | | 1 | (| 0 | 0 | 0 | 6 | 2 | 1 | | | . 1 | 0 | 0 | 2 | 6 | 2 | 3 | · .
 | | 1 | (| 0 | 0 | 0 | 7 | 4 | 3 | | | 1 | 0 | 0 | 2 | 6 | .3 | 7 | | | 1 | (| 0 | 0 | 0 | 7 | 5 | 1 | | ٠, | 1 | 0 | 0 | 2 | 7 | 0 | 5 | | | 1 | (| 0 | 0 | 0 | 7 | 5 | 7 | | | 1 | 0 | 0 | 2 | 7 | 3 | 3 | | | 1 | . (|) | 0 | 1 | 0 | 1 | 3 | | | 1 | 0 | 0 | 2 | 7 | 4 | 1 | | | i | (|) | 0 | 1 | 0 | 2 | 3 | | | 1 | 0 | ó | 2 | 7 | 7 | 7 | | | 1 | (|) | 0 | 1 | 1 | 4 | 1 | | | 1 | 0 | 0 | 3 | 0 | 1 | 1 | | | 1 | (|) | 0 | 1 | 1 | 6 | 5 | | | 1 | 0 | 0 | 3 | 0 | 3 | 5 | | | 1 | (|) | 0 | 1 | 2 | 5 | 3 | | | 1 | 0 | .0 | 3 | 0 | 5 | 3 | | | 1 | (|) | 0 | 1 | 3 | 6 | 1 | | | | - 1 | 0 | | | | 5 | | | 1. | . (|) | 0 | 1 | 4 | 2 | 7 | | | | | 0 | | | | 5 | | | 1 | C |) | 0 | 1 | 4 | 5 | 3 | | | | | 0 | | | | | | | 1 | . (|) | 0 | 1 | 4 | 5 | 5 | | | | | 0 | | | | 1 | | | 1 | C |) | 0 | 1 | 5 | 6 | 7 | | | | | 0 | | | | | | | | | | | | | 0 | | | • | | | 0 | | | | | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | 1 | | | | | | | • | | | | | | | | | | | | | | 0 | | | | | | | _ | _ | | - | _ | - | - | - | | | _ | • | ~ | 1 | | • | J | | Table 5-3. MA 18-Stage Return PN Pairs (octal polynomials) | | | Augment period by one chip | |---
--|---| | 6 | 7 | | | 0 | 5 | | | 2 | 1, | | | 7 | ļ | | | 6 | 1 | | | 1 | 5 | | | 4 | 3 | | | 6 | 1 | | | 1 | 1 | | | 2 | 7 | | | 3 | 3 | | | 0 | 3 | | | 1 | 1 | | | 5 | 5 | • | | 6 | 5 | | | 1 | 1 | | | 2 | 3 | | | 2 | 3 | | | 0 | 7 | | | 6 | 1 | | | 2 | 1 | | | 7 | 1 | | | 4 | 1 | | | | | | | 7 | 7 | | | | 5 | | | | 1 | | | | 7 . | | | | | • | | | 0
2
7
6
1
4
6
1
2
3
0
1
5
6
1
2
2
0
6
2
7
1
7
0
7
0
7
0
7
0
7
0
7
0
7
0
0
7
0
0
7
0
0
7
0
0
7
0
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 2 1 7 1 6 1 1 5 4 3 6 1 1 1 2 7 3 3 0 3 1 1 5 5 6 5 1 1 2 3 2 3 0 7 6 1 2 1 7 1 4 1 5 5 7 7 1 5 | Table 5-4. MA Return Link Only (octal polynomials) | - | _1 | 1-8 | Stage | e P | ai | rs | | _ | 13-Stage Pairs 2 0 0 3 3 2 5 5 1 1 | | | | | | | | | | | | | 1 | 5- | Stage | 9 P | air | s | | | | |--------|----|-----|--------|--------|----|-----------------------|---|---|------------------------------------|---|---|----|----|---|---|-----|----|---|---|---|----|---|----|--------|-----|-----|------------|---|------------|---| | 4 | 0 | 0 | 5 | 6 | 7 | 1 | 1 | 2 | 0 | 0 | 3 | 3 | 2 | 5 | 5 | 1 | 1 | | 1 | 0 | Ó | 0 | 0 | 3 | 1 | 3 | 1 | 4 | 2 | 7 | | 4 | 4 | 4 | 5 | 7 | 7 | 1 | 5 | 2 | 3 | 2 | 6 | 1 | 2 | 6 | 5 | 3. | 3 | | 1 | 0 | 2 | 0 | 4 | 3 | 1 | 6 | 1 | 6 | 1 | 5 | | 4 | 2 | 1 | 5 | 6 | 3 | 4 | 3 | 2 | 4 | 6 | 2 | 3 | 3 | 3 | 3 | 4 | 3 | | 1 | 1 | 0 | 0 | 1 | 3 | 1 | 1 | 5 | 1 | 5 | 5 | | 4 | 0 | 5 | 5 | 6 | 2 | 2 | 7 | 2 | 3 | 5 | 1 | 7 | 3 | 3 | 7 | 2 | 7 | | 1 | 0 | 2 | 0 | 6 | .7 | 1 | 2 | 3 | 0 | 6 | 7 | | 6 | 0 | 1 | 5 | 6 | 2 | 6 | 3 | 3 | 0 | 7 | 4 | 1 | 2 | 7 | 2 | 7 | 1 | | 1 | 0 | 4 | 3 | 0 | 7 | 1 | 0 | 2 | 5 | 6 | 1 | | 7 | 4 | 1 | 3 | 5 | 2 | 3 | 5 | 2 | 1 | 6 | 4 | 3 | 2 | 5 | 0 | 1 | 7 | - | 1 | 0 | 0 | 3 | 1 | 7 | 1 | 7 | 0 | 0 | 5 | 7 | | 4 | 1 | 4 | 3 | • 7 | 4 | 3 | 1 | 3 | 0 | 1 | 7 | 1 | 2 | 6 | 0 | 4 | 1 | | 1 | 7 | 7 | 7 | 7 | 5 | 1 | 2 | 5 | 2 | 3 | 5 | | 4 | 5 | 6 | 3 | 6 | 4 | 5 | 5 | 2 | 1 | 2 | 7 | 7 | 2 | 1 | 1 | 0 | 3 | | 1 | 0 | 3 | 4 | 5 | 1 | 1 | 7 | 3 | 1 | 1 | 7 | | 4 | 0 | 5 | 3 | 5 | 2 | 4 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | 7 | 2 | 6 | 3 | | 1 | 1 | 0 | 0 | 7 | 5 | 1 | 3 | 4 | 5 | 3 | 1 | | 5 | 0 | 2 | 3 | 5 | 2 | 6 | 5 | 3 | 5 | 0 | 5 | 1 | 2 | 4 | 5 | . 1 | 3 | | 1 | 0 | 2 | 0 | 6 | 1 | 1 | 2 | 5 | 5 | 0 | 7 | | .5 | 6 | 2 | 3 | 4 | 7 | 6 | 7 | 3 | 4 | 7 | 2 | 3 | 3. | 2 | 3 | 1 | 1 | | 1 | 1 | 4 | 7 | 2 | 5 | 1 | 7 | 1 | 7 | , 3 | 7 | | 4 | | 7 | 7 | 5 | 6 | 0 | 7 | 3 | 4 | 0 | 4 | 7 | 3 | 1 | 7 | 4 | 3 | | 1 | 0 | 3 | 2 | 5 | 1 | 1 | 5 | 2 | 4 | 1 | 7 | | 6 | 2 | 3 | 3 | 4 | 6 | 0 | 3 | 3 | 2 | 5 | 3 | 5 | 2 | 4 | 0 | 3 | 7 | | 1 | 6 | 3 | 0 | 0 | 5 | 1 | 4 | 2 | 3 | 0 | 5 | | 6 | 6 | 7 | 3 | 6 | 5 | | 1 | 3 | 1 | 4 | 2 | 5 | 3 | 0 | 7 | 1 | 1 | | 1 | 1 | 2 | 6 | 1 | 1 | 1 | 2 | 0 | 0 | 4 | 3 | | 7 | 2 | 3 | | 7 | 1 | 0 | 7 | | . 7 | 5 | 0 | 5 | 3 | 2 | 6 | 4 | 1 | | 1 | 2 | 0. | 2 | 6 | 5 | 1 | 3 | 6 | 1 | 7 | 3 | | 7 | | | 5 | 7 | 0 | 4 | 1 | | 6 | 5 | 1 | 5 | 2 | 4 | 6 | 5 | 7 | | 1 | 1 | 7 | 4 | 2 | 3 · | 1 | 2 | 2 | 2 | 3 | 1 | | 4 | | 0 | 5 | 4 | | Ē. | 1 | 2 | 6 | | 7 | 7 | 3 | 2 | 4 | 3 | 7 | | 1 | 0 | 6 | | 4 | 1 | 1 | 6 | 4 | 7 | 0 | 5 | | 5 | | 3 | 7 | | | . 7 [*]
- | | | 5 | | 7 | 3 | 2 | 0 | 2 | 1 | 3 | | 1 | 6 | 1 | | 0 | 7 | 1 | 7 | 7 | 7 | 5 | 7 | | 5 | | 6 | 3 | 4 | | 7 | 3 | 2 | 0 | 6 | 3 | 5 | 2 | 5 | 6 | 3 | 3 | | 1 | 7 | 4 | 0 | 0 | 3 · | 1 | 4 | 6 | 6 | 3 | 7 | | 5 | 3 | 6 | 1 | 4 | • | 0 | 7 | | 3 | 7 | | .3 | 3 | 1 | 3 | 0 | 3 | | 1 | 1 | 3 | 3 | 3 | 7 | 1 | • | 7 | 5 | 3 | | | 5 | 1 | 7 | 1 | | 4 | | 3 | 2 | | 7 | 4 | 5 | 2 | 2 | 5 | 2 | | | 1 | 2 | 6 | 0 | | 7 | 1 | _ | 2 | | 4 | | | 6
7 | | 3 | 7
3 | 5
6 | | 5
7 | 5 | 3 | - | 5 | 7 | 5. | 3 | 4 | 6 | 2 | 7. | | 1 | | | | 5 | 7 | 1 | 0 | 3 | 1 | 4 | | | • | | 1 | | _ | - | 5 | 5 | 2 | _ | 6 | | 3 | 2 | 5 | 7 | 7 | 5 | | 1 | 1 | 4 | 4 | 6 | 7 | 1 | 1 | 2 | 7 | 5 | 1 | | | | | | | | | | | | | | | 2 | | | | | | | | | | | 7 | | | | | 3 | 7
1 | | | | | | | | | | 1 | | | | | 1 | 3 | | | | | 3 | 3 | | | | | 4 | | | | | | 3 | | | | | | | | | | 2 | | | | | | | | | | | 3
1 | | | | | | | | | | | 1 | 5 | | | | | 7
7 | | | ··I | | • | • | - | _ | , | - | | | - | J | _ | _ | 1 | 4 | v | U | | + | • | U | 4 | U | J | Т | 4 | o . | Э | 7 | វ | Augment period by one chip. Table 5-5. S-Band SA Forward Link (octal polynomials) | 9-Stage for FH | 19-Stage Forw | ard PN Pair | • | |----------------|---------------|---------------|-----------------------| | 1 0 2 1 | 2 0 0 0 0 4 7 | 2 0 0 0 6 7 7 | Augment period by one | | 1 1 3 1 | 2 0 0 0 0 7 7 | 2 0 0 0 7 0 7 | chip | | 1 4 6 1 | 2 0 0 0 1 0 7 | 2 0 0 0 7 1 5 | | | 1 4 2 3 | 2 0 0 0 1 2 3 | 2 0 0 0 7 3 7 | | | 1 0 5 5 | 2 0 0 0 1 3 1 | 2 0 0 1 0 1 3 | | | 1 1 6 7 | 2 0 0 0 1 4 3 | 2 0 0 1 0 2 3 | | | 1 5 4 1 | 2 0 0 0 1 5 7 | 2 0 0 1 0 3 1 | · | | 1 3 3 3 | 2 0 0 0 1 7 5 | 2 0 0 1 0 4 5 | | | 1 6 0 5 | 2 0 0 0 2 2 3 | 2 0 0 1 0 6 1 | | | 1 7 5 1 | 2 0 0 0 2 5 7 | 2 0 0 1 1 1 7 | | | 1 7 4 3 | 2 0 0 0 3 4 1 | 2 0 0 1 1 2 1 | | | 1 6 1 7 | 2 0 0 0 5 0 3 | 2 0 0 1 1 5 3 | | | 1 5 5 3 | 2 0 0 0 5 4 1 | 2 0 0 1 1 5 5 | | | 1 1 5 7 | 2 0 0 0 5 5 3 | 2 0 0 1 2 0 3 | | | 1 7 1 5 | 2 0 0 0 5 6 5 | 2 0 0 1 2 0 5 | | | 1 5 6 3 | 2 0 0 0 6 0 5 | 2 0 0 1 2 2 7 | | | 1 7 1 3 | 2 0 0 0 6 3 5 | 2 0 0 1 2 4 1 | | | 1 1 7 5 | 2 0 0 0 6 4 1 | 2 0 0 1 4 4 1 | | | 1 7 2 5 | 2 0 0 0 6 5 5 | 2 0 0 1 5 0 7 | | | 1 2 2 5 | 2000663 | 2001551 | | Table 5-6. S-Band SA Return PN Pair (octal polynomials) | _ | | | | | 19- | -St | age Pa | irs | 3 | | · · · · | · | | | | | | - | | | • | | | | | - | |---|----|---|---|---|-----|-----|--------|-----|---|---|---------|---|-----|---|----|---|---|------|-----|------|-----|------|----|-----|-----|----| | 2 | 0 | 0 | 1 | 5 | 5 | 7 | 2 | 0 | 0 | 2 | 4 | 5 | 3 | | | | | Augi | ner | it p | eri | od l | by | one | ch: | ip | | 2 | 0 | 0 | 1 | 6 | 3 | 7 | 2 | 0 | 0 | 2 | 4 | 7 | . 1 | , | | | | | | | | · | | | | | | 2 | 0 | 0 | 1 | 6 | 4 | 5 | 2 | . 0 | 0 | 2 | 5 | 0 | 1 | | | • | | | | | _ | A | | | | | | 2 | 0 | 0 | 1 | 6 | 5 | 1 | 2 | 0 | 0 | 2 | 5 | 2 | 3 | | | | | | | | • | | | | • | | | 2 | 0 | 0 | 1 | 7 | . 1 | 1 | 2 | 0 | 0 | 2 | 5 | 3 | 7 | | | | | | | | | | | | | | | 2 | 0 | 0 | 1 | 7 | 2 | 7 | 2 | 0 | 0 | 2 | 5 | 6 | 1 | | | | | | | | | | | | • | | | 2 | 0 | 0 | 1 | 7 | 3 | 3 | 2 | 0 | 0 | 2 | 5 | 6 | 7 | | | | | | | | | | | | | | | 2 | 0 | 0 | 1 | 7 | 3 | 5 | 2 | 0 | 0 | 2 | 6. | 5 | 1 | | | | • | | | | | | | | | | | 2 | 0 | 0 | 1 | 7 | 6 | 3 | 2 | 0 | 0 | 2 | 6 | 7 | 3 | - | ٠. | • | | | | | | | | | • | ٠. | | 2 | .0 | 0 | 2 | 0 | 6 | 7 | 2 | 0 | 0 | 2 | 7 | 2 | 1 | | | | | | | | | | | | | | | 2 | 0 | 0 | 2 | 1 | 2 | 1 | 2 | 0 | 0 | 2 | 7 | 2 | 7 | | | | | | | | | | | | | | | 2 | 0 | 0 | 2 | 1 | 6 | 5 | 2 | 0 | 0 | 2 | 7 | 3 | 5 | | | | | | | | | . • | | | | | | 2 | 0 | 0 | 2 | 1 | 7 | 7 | 2 | 0 | 0 | 2 | 7 | 5 | 3 | | | | | | | | | | | | • | | | 2 | 0 | 0 | 2 | 2 | 1 | 1 | 2 | 0 | 0 | 2 | 7 | 6 | 5 | | | | | | | | | | | | | | | 2 | 0 | 0 | 2 | 2 | 2 | 1 | 2 | 0 | 0 | 2 | 7. | 7 | 1 | | | | | | | | | | | | | | | 2 | 0 | 0 | 2 | 2 | 6 | 5 | 2 | 0 | 0 | 3 | 0 | 1 | 1 | | | | | | | - | | | | | | | | 2 | 0 | 0 | 2 | 2 | 7 | 1 | 2 | . 0 | 0 | 3 | 0 | 2 | 1 | | | | | - | | | • | | | | | | | 2 | 0 | 0 | 2 | 3 | 2 | 3 | .2 | Ò | 0 | 3 | 0 | 6 | 3 | | | | | | | | | | | | | | | 2 | 0 | 0 | 2 | 3 | 3 | 1 | 2 | 0 | 0 | 3 | . 1 | 0 | 1 | | | 1 | | | | | | | | | | | | 2 | 0 | 0 | 2 | 4 | 3 | 5 | 2 | 0 | 0 | 3 | 1 | 1 | 3 | | | | | | | | | | | | | | ## SECTION VI REFERENCES - [1] C.R. Cahn and R.S. Cnossen, TDRSS Telecommunications Study, Phase I Final Report, Contract NAS5-20047, 15 September, 1974. - [2] B.H. Batson, Signal Designs for Orbiter Wideband Relay Communications Links, NASA-JSC, October 1, 1974. - [3] L. Jacobson, R. Schoolcraft and P. Hooten, "Highly Efficient Voice Modulation for Low C/No Communications Channels with Hard Limiting Repeaters," IEEE Trans. on Comm., Vol. COM-21, February 1973, pp. 127-135. - [4] C.R. Cahn, "Analysis of Transmission Schemes for Analog," Magnavox Report MX-TM-3116-71, 17 September 1971. - [5] K.W. Harris, S. Udalov, C. Perle, Magnavox Final Report/Technical Manual for Advanced Modem MX 480/481 and MX 482 Test Set, Contract No. DOT-TSC-623, 14 March 1974. - [6] C.R. Cahn and R.S. Cnossen, TDRSS Telecommunications Study, Phase I Final Report, 15 September 1974, Contract NAS5-20047, Sections 3.1.9 and 4.14. - [7] C.R. Cahn, "Comparison of Phase Tracking Schemes for PSK," Proc. of Int. Telem. Conf., 1974. - [8] R.W. Allen and B.H. Batson, "A Variable-Data-Rate, Multimode Quadriphase Modem," Proc. Int. Comm. Conf., 1973. - [9] M.K. Simon and J.G. Smith, "Offset Quadrature Communications with Decision-Feedback Carrier Synchronization," IEEE Trans. on Comm., October 1974, pp. 1576-1584. - [10] General Dynamics, GRARR Design Evaluation Reports, Contract NAS5-1055, 13 December 1967. - [11] A.J. Viterbi, "Principles of Coherent Communication," McGraw-Hill, 1966, p. 54. - [12] General Dynamics, STDN Ranging Equipment, Design Evaluation Report, Contract NAS5-20456, January 1974.